Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(4): eadj5569, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277447

RESUMO

Marine heat waves affect ocean ecosystems and are expected to become more frequent and intense. Earth system models' ability to reproduce extreme ocean temperature statistics has not been tested quantitatively, making the reliability of their future projections of marine heat waves uncertain. We demonstrate that annual maxima of detrended anomalies in daily mean sea surface temperatures (SSTs) over 39 years of global satellite observations are described excellently by the generalized extreme value distribution. If models can reproduce the observed distribution of SST extremes, this increases confidence in their marine heat wave projections. 14 CMIP6 models' historical realizations reproduce the satellite-based distribution and its parameters' spatial patterns. We find that maximum ocean temperatures will become warmer (by 1.07° ± 0.17°C under 2°C warming and 2.04° ± 0.18°C under 3.2°C warming). These changes are mainly due to mean SST increases, slightly reinforced by SST seasonality increases. Our study quantifies ocean temperature extremes and gives confidence to model projections of marine heat waves.

2.
Opt Express ; 31(24): 40557-40572, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041353

RESUMO

Ocean reflectance inversion algorithms provide many products used in ecological and biogeochemical models. While a number of different inversion approaches exist, they all use only spectral remote-sensing reflectances (Rrs(λ)) as input to derive inherent optical properties (IOPs) in optically deep oceanic waters. However, information content in Rrs(λ) is limited, so spectral inversion algorithms may benefit from additional inputs. Here, we test the simplest possible case of ingesting optical data ('seeding') within an inversion scheme (the Generalized Inherent Optical Property algorithm framework default configuration (GIOP-DC)) with both simulated and satellite datasets of an independently known or estimated IOP, the particulate backscattering coefficient at 532 nm (bbp(532)). We find that the seeded-inversion absorption products are substantially different and more accurate than those generated by the standard implementation. On global scales, seasonal patterns in seeded-inversion absorption products vary by more than 50% compared to absorption from the GIOP-DC. This study proposes one framework in which to consider the next generation of ocean color inversion schemes by highlighting the possibility of adding information collected with an independent sensor.

3.
Nature ; 619(7970): 551-554, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438519

RESUMO

Strong natural variability has been thought to mask possible climate-change-driven trends in phytoplankton populations from Earth-observing satellites. More than 30 years of continuous data were thought to be needed to detect a trend driven by climate change1. Here we show that climate-change trends emerge more rapidly in ocean colour (remote-sensing reflectance, Rrs), because Rrs is multivariate and some wavebands have low interannual variability. We analyse a 20-year Rrs time series from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite, and find significant trends in Rrs for 56% of the global surface ocean, mainly equatorward of 40°. The climate-change signal in Rrs emerges after 20 years in similar regions covering a similar fraction of the ocean in a state-of-the-art ecosystem model2, which suggests that our observed trends indicate shifts in ocean colour-and, by extension, in surface-ocean ecosystems-that are driven by climate change. On the whole, low-latitude oceans have become greener in the past 20 years.


Assuntos
Mudança Climática , Cor , Ecossistema , Oceanos e Mares , Fitoplâncton , Imagens de Satélites , Análise Espaço-Temporal , Mudança Climática/estatística & dados numéricos , Ecologia , Fitoplâncton/isolamento & purificação , Fitoplâncton/fisiologia , Modelos Climáticos , Fatores de Tempo
4.
Sci Adv ; 9(16): eadf9302, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083537

RESUMO

The climate feedback determines how Earth's climate responds to anthropogenic forcing. It is thought to have been more negative in recent decades due to a sea surface temperature "pattern effect," whereby warming is concentrated in the western tropical Pacific, where nonlocal radiative feedbacks are very negative. This phenomenon has however primarily been studied within climate models. We diagnose a pattern effect from historical records as an evolution of the climate feedback over the past five decades. Our analysis assumes a constant rate of change of the climate feedback, which is justified post hoc. We find a decrease in climate feedback by 0.8 ± 0.5 W m-2 K-1 over the past 50 years, corresponding to a reduction in climate sensitivity. Earth system models' climate feedbacks instead increase over this period. Understanding and simulating this historical trend and its future evolution are critical for reliable climate projections.

6.
Nat Microbiol ; 7(4): 570-580, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365792

RESUMO

The photosynthetic picocyanobacteria Prochlorococcus and Synechococcus are models for dissecting how ecological niches are defined by environmental conditions, but how interactions with bacteriophages affect picocyanobacterial biogeography in open ocean biomes has rarely been assessed. We applied single-virus and single-cell infection approaches to quantify cyanophage abundance and infected picocyanobacteria in 87 surface water samples from five transects that traversed approximately 2,200 km in the North Pacific Ocean on three cruises, with a duration of 2-4 weeks, between 2015 and 2017. We detected a 550-km-wide hotspot of cyanophages and virus-infected picocyanobacteria in the transition zone between the North Pacific Subtropical and Subpolar gyres that was present in each transect. Notably, the hotspot occurred at a consistent temperature and displayed distinct cyanophage-lineage composition on all transects. On two of these transects, the levels of infection in the hotspot were estimated to be sufficient to substantially limit the geographical range of Prochlorococcus. Coincident with the detection of high levels of virally infected picocyanobacteria, we measured an increase of 10-100-fold in the Synechococcus populations in samples that are usually dominated by Prochlorococcus. We developed a multiple regression model of cyanophages, temperature and chlorophyll concentrations that inferred that the hotspot extended across the North Pacific Ocean, creating a biological boundary between gyres, with the potential to release organic matter comparable to that of the sevenfold-larger North Pacific Subtropical Gyre. Our results highlight the probable impact of viruses on large-scale phytoplankton biogeography and biogeochemistry in distinct regions of the oceans.


Assuntos
Prochlorococcus , Synechococcus , Vírus , Oceano Pacífico , Água do Mar/microbiologia
7.
Sci Adv ; 7(44): eabf8593, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714679

RESUMO

Marine microbial communities sustain ocean food webs and mediate global elemental cycles. These communities will change with climate; these changes can be gradual or foreseeable but likely have much more substantial consequences when sudden and unpredictable. In a complex virtual marine microbial ecosystem, we find that climate change­driven shifts over the 21st century are often abrupt, large in amplitude and extent, and unpredictable using standard early warning signals. Phytoplankton with unique resource needs, especially fast-growing species such as diatoms, are more prone to abrupt shifts. Abrupt shifts in biomass, productivity, and community structure are concentrated in Atlantic and Pacific subtropics. Abrupt changes in environmental variables such as temperature and nutrients rarely precede these ecosystem shifts, indicating that rapid community restructuring can occur in response to gradual environmental changes, particularly in nutrient supply rate ratios.

8.
Nat Commun ; 12(1): 5372, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508102

RESUMO

The future response of marine ecosystem diversity to continued anthropogenic forcing is poorly constrained. Phytoplankton are a diverse set of organisms that form the base of the marine ecosystem. Currently, ocean biogeochemistry and ecosystem models used for climate change projections typically include only 2-3 phytoplankton types and are, therefore, too simple to adequately assess the potential for changes in plankton community structure. Here, we analyse a complex ecosystem model with 35 phytoplankton types to evaluate the changes in phytoplankton community composition, turnover and size structure over the 21st century. We find that the rate of turnover in the phytoplankton community becomes faster during this century, that is, the community structure becomes increasingly unstable in response to climate change. Combined with alterations to phytoplankton diversity, our results imply a loss of ecological resilience with likely knock-on effects on the productivity and functioning of the marine environment.


Assuntos
Biodiversidade , Modelos Biológicos , Oceanos e Mares , Fitoplâncton , Mudança Climática , Previsões/métodos
9.
Geophys Res Lett ; 48(7): e2020GL091746, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34219838

RESUMO

The ocean's "biological pump" significantly modulates atmospheric carbon dioxide levels. However, the complexity and variability of processes involved introduces uncertainty in interpretation of transient observations and future climate projections. Much research has focused on "parametric uncertainty," particularly determining the exponent(s) of a power-law relationship of sinking particle flux with depth. Varying this relationship's functional form introduces additional "structural uncertainty." We use an ocean biogeochemistry model substituting six alternative remineralization profiles fit to a reference power-law curve, to systematically characterize structural uncertainty, which, in atmospheric pCO2 terms, is roughly 50% of parametric uncertainty associated with varying the power-law exponent within its plausible global range, and similar to uncertainty associated with regional variation in power-law exponents. The substantial contribution of structural uncertainty to total uncertainty highlights the need to improve characterization of biological pump processes, and compare the performance of different profiles within Earth System Models to obtain better constrained climate projections.

10.
Limnol Oceanogr ; 66(6): 2442-2454, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34248205

RESUMO

In the North Pacific Ocean, nutrient rich surface waters flow south from the subpolar gyre through a transitional region and into the subtropics. Along the way, nutrients are used, recycled, and exported, leading to lower biomass and a commensurate change in ecosystem structure moving southward. We focus on the region between the two gyres (the Transition Zone) using a coupled biophysical ocean model, remote sensing, floats, and cruise data to explore the nature of the physical, biogeochemical, and ecological fields in this region. Nonlinear interactions between biological processes and the meridional gradient in nutrient supply lead to sharp shifts across this zone. These transitions between a southern region with more uniform biological and biogeochemical properties and steep meridional gradients to the north are diagnosed from extrema in the first derivative of the properties with latitude. Some transitions like that for chlorophyll a (the transition zone chlorophyll front [TZCF]) experience large seasonal excursions while the location of the transitions in other properties moves very little. The seasonal shifts are not caused by changes in the horizontal flow field, but rather by the interaction of seasonal, depth related, forcing with the mean latitudinal gradients. Focusing on the TZCF as a case study, we express its phase velocity in terms of vertical nutrient flux and internal ecosystem processes, demonstrating their nearly equal influence on its motion. This framework of propagating biogeochemical transitions can be systematically expanded to better understand the processes that structure ecosystems and biogeochemistry in the North Pacific and beyond.

11.
Phys Rev Lett ; 126(22): 224502, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152160

RESUMO

The statistics of intermittent ocean turbulence is the key link between physical understanding of turbulence and its global implications. The log-normal distribution is the standard but imperfect assumed distribution for the turbulent kinetic energy dissipation rate. We argue that as turbulence is often generated by multiple changing sources, a log-skew-normal (LSN) distribution is more appropriate. We show the LSN distribution agrees excellently and robustly with observations. The heavy tail of the LSN distribution has important implications for sampling of turbulence in terrestrial and extraterrestrial analogous systems.

12.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649201

RESUMO

Marine microbial communities are highly interconnected assemblages of organisms shaped by ecological drift, natural selection, and dispersal. The relative strength of these forces determines how ecosystems respond to environmental gradients, how much diversity is resident in a community or population at any given time, and how populations reorganize and evolve in response to environmental perturbations. In this study, we introduce a globally resolved population-genetic ocean model in order to examine the interplay of dispersal, selection, and adaptive evolution and their effects on community assembly and global biogeography. We find that environmental selection places strong constraints on global dispersal, even in the face of extremely high assumed rates of adaptation. Changing the relative strengths of dispersal, selection, and adaptation has pronounced effects on community assembly in the model and suggests that barriers to dispersal play a key role in the structuring of marine communities, enhancing global biodiversity and the importance of local historical contingencies.


Assuntos
Modelos Biológicos , Plâncton/fisiologia , Filogeografia
13.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33536337

RESUMO

Organic matter constitutes a key reservoir in global elemental cycles. However, our understanding of the dynamics of organic matter and its accumulation remains incomplete. Seemingly disparate hypotheses have been proposed to explain organic matter accumulation: the slow degradation of intrinsically recalcitrant substrates, the depletion to concentrations that inhibit microbial consumption, and a dependency on the consumption capabilities of nearby microbial populations. Here, using a mechanistic model, we develop a theoretical framework that explains how organic matter predictably accumulates in natural environments due to biochemical, ecological, and environmental factors. Our framework subsumes the previous hypotheses. Changes in the microbial community or the environment can move a class of organic matter from a state of functional recalcitrance to a state of depletion by microbial consumers. The model explains the vertical profile of dissolved organic carbon in the ocean and connects microbial activity at subannual timescales to organic matter turnover at millennial timescales. The threshold behavior of the model implies that organic matter accumulation may respond nonlinearly to changes in temperature and other factors, providing hypotheses for the observed correlations between organic carbon reservoirs and temperature in past earth climates.


Assuntos
Carbono/metabolismo , Microbiota/genética , Modelos Teóricos , Compostos Orgânicos/metabolismo , Clima , Temperatura
14.
Proc Natl Acad Sci U S A ; 117(45): 27862-27868, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093199

RESUMO

Fossil-fuel emissions may impact phytoplankton primary productivity and carbon cycling by supplying bioavailable Fe to remote areas of the ocean via atmospheric aerosols. However, this pathway has not been confirmed by field observations of anthropogenic Fe in seawater. Here we present high-resolution trace-metal concentrations across the North Pacific Ocean (158°W from 25°to 42°N). A dissolved Fe maximum was observed around 35°N, coincident with high dissolved Pb and Pb isotope ratios matching Asian industrial sources and confirming recent aerosol deposition. Iron-stable isotopes reveal in situ evidence of anthropogenic Fe in seawater, with low δ56Fe (-0.23‰ > δ56Fe > -0.65‰) observed in the region that is most influenced by aerosol deposition. An isotope mass balance suggests that anthropogenic Fe contributes 21-59% of dissolved Fe measured between 35° and 40°N. Thus, anthropogenic aerosol Fe is likely to be an important Fe source to the North Pacific Ocean.


Assuntos
Poluentes Atmosféricos/análise , Combustíveis Fósseis/efeitos adversos , Aerossóis/análise , Ásia , Monitoramento Ambiental/métodos , Ferro/efeitos adversos , Isótopos de Ferro/efeitos adversos , Oceano Pacífico , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo , Água do Mar/análise , Água do Mar/química , Oligoelementos/efeitos adversos
15.
Nat Commun ; 11(1): 4626, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934228

RESUMO

The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral reproduction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus-host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host-virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host-virus densities.


Assuntos
Haptófitas/virologia , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Haptófitas/fisiologia , Interações Hospedeiro-Patógeno , Modelos Biológicos , Virulência
16.
Appl Opt ; 59(13): 3971-3984, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400669

RESUMO

The increasing use of hyperspectral optical data in oceanography, both in situ and via remote sensing, holds the potential to significantly advance characterization of marine ecology and biogeochemistry because, in principle, hyperspectral data can provide much more detailed inferences of ecosystem properties via inversion. Effective inferences, however, require careful consideration of the close similarity of different signals of interest, and how these interplay with measurement error and uncertainty to reduce the degrees of freedom (DoF) of hyperspectral measurements. Here we discuss complementary approaches to quantify the DoF in hyperspectral measurements in the case of in situ particulate absorption measurements, though these approaches can also be used on other such data, e.g., ocean color remote sensing. Analyses suggest intermediate (${\sim}5 $∼5) DoF for our dataset of global hyperspectral particulate absorption spectra from the Tara Oceans expedition, meaning that these data can yield coarse community structure information. Empirically, chlorophyll is an effective first-order predictor of absorption spectra, meaning that error characteristics and the mathematics of inversion need to be carefully considered for hyperspectral data to provide information beyond that which chlorophyll provides. We also discuss other useful analytical tools that can be applied to this problem and place our results in the context of hyperspectral remote sensing.


Assuntos
Clorofila/fisiologia , Fitoplâncton/fisiologia , Pigmentação/fisiologia , Pigmentos Biológicos/metabolismo , Tecnologia de Sensoriamento Remoto/métodos , Clorofila/química , Cor , Ecossistema , Monitoramento Ambiental , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Oceanografia , Oceanos e Mares , Fitoplâncton/química , Pigmentos Biológicos/química , Espectrofotometria
17.
Geophys Res Lett ; 46(10): 5445-5451, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31423035

RESUMO

Under an emission scenario where atmospheric greenhouse gas concentrations are stabilized, previous work suggests that on centennial time scales the rate of global temperature increases would steady at significantly lower rates than those of the 21st century. As climate change is not globally uniform, regional differences in achieving this steady rate of warming can be expected. Here, we define a "Time of Steady Change" (TSC) as the time of reaching this steady rate of warming, and we present a method for estimating TSC with the use of General Circulation Model experiments run under greenhouse gas stabilization scenarios. We find that TSC occurs latest in low latitudes and in the Arctic, despite these areas steadying at very different absolute warming rates. These broad patterns are robust across multiple General Circulation Model ensembles and alternative definitions of TSC. These results indicate large regional differences in the trajectory of climate change in coming centuries.

18.
Proc Natl Acad Sci U S A ; 116(20): 9753-9758, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036647

RESUMO

Particulate organic carbon (POC) produced in the surface ocean sinks through the water column and is respired at depth, acting as a primary vector sequestering carbon in the abyssal ocean. Atmospheric carbon dioxide levels are sensitive to the length (depth) scale over which respiration converts POC back to inorganic carbon, because shallower waters exchange with the atmosphere more rapidly than deeper ones. However, estimates of this carbon regeneration length scale and its spatiotemporal variability are limited, hindering the ability to characterize its sensitivity to environmental conditions. Here, we present a zonal section of POC fluxes at high vertical and spatial resolution from the GEOTRACES GP16 transect in the eastern tropical South Pacific, based on normalization to the radiogenic thorium isotope 230Th. We find shallower carbon regeneration length scales than previous estimates for the oligotrophic South Pacific gyre, indicating less efficient carbon transfer to the deep ocean. Carbon regeneration is strongly inhibited within suboxic waters near the Peru coast. Canonical Martin curve power laws inadequately capture POC flux profiles at suboxic stations. We instead fit these profiles using an exponential function with flux preserved at depth, finding shallow regeneration but high POC sequestration below 1,000 m. Both regeneration length scales and POC flux at depth closely track the depths at which oxygen concentrations approach zero. Our findings imply that climate warming will result in reduced ocean carbon storage due to expanding oligotrophic gyres, but opposing effects on ocean carbon storage from expanding suboxic waters will require modeling and future work to disentangle.

19.
Global Biogeochem Cycles ; 32(6): 954-970, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30174373

RESUMO

We describe the basis of a theory for interpreting measurements of two key biogeochemical fluxes-primary production by phytoplankton (p, µg C · L-1 · day-1) and biological carbon export from the surface ocean by sinking particles (f, mg C · m-2 · day-1)-in terms of their probability distributions. Given that p and f are mechanistically linked but variable and effectively measured on different scales, we hypothesize that a quantitative relationship emerges between collections of the two measurements. Motivated by the many subprocesses driving production and export, we take as a null model that large-scale distributions of p and f are lognormal. We then show that compilations of p and f measurements are consistent with this hypothesis. The compilation of p measurements is extensive enough to subregion by biome, basin, depth, or season; these subsets are also well described by lognormals, whose log-moments sort predictably. Informed by the lognormality of both p and f we infer a statistical scaling relationship between the two quantities and derive a linear relationship between the log-moments of their distributions. We find agreement between two independent estimates of the slope and intercept of this line and show that the distribution of f measurements is consistent with predictions made from the moments of the p distribution. These results illustrate the utility of a distributional approach to biogeochemical fluxes. We close by describing potential uses and challenges for the further development of such an approach.

20.
Phys Rev Lett ; 120(14): 148701, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694130

RESUMO

Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...