Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 22(1): 348, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930411

RESUMO

Understanding the contributions of transcription factor DNA binding sites to transcriptional enhancers is a significant challenge. We developed Quantitative enhancer-FACS-Seq for highly parallel quantification of enhancer activities from a genomically integrated reporter in Drosophila melanogaster embryos. We investigate the contributions of the DNA binding motifs of four poorly characterized TFs to the activities of twelve embryonic mesodermal enhancers. We measure quantitative changes in enhancer activity and discover a range of epistatic interactions among the motifs, both synergistic and alleviating. We find that understanding the regulatory consequences of TF binding motifs requires that they be investigated in combination across enhancer contexts.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Elementos Facilitadores Genéticos , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Fatores de Transcrição/metabolismo
2.
Front Microbiol ; 8: 288, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28298904

RESUMO

In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB's fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability.

3.
J Bacteriol ; 196(16): 3023-35, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24914188

RESUMO

Escherichia coli strains overproducing DinB undergo survival loss; however, the mechanisms regulating this phenotype are poorly understood. Here we report a genetic selection revealing DinB residues essential to effect this loss-of-survival phenotype. The selection uses strains carrying both an antimutator allele of DNA polymerase III (Pol III) α-subunit (dnaE915) and either chromosomal or plasmid-borne dinB alleles. We hypothesized that dnaE915 cells would respond to DinB overproduction differently from dnaE(+) cells because the dnaE915 allele is known to have an altered genetic interaction with dinB(+) compared to its interaction with dnaE(+). Notably, we observe a loss-of-survival phenotype in dnaE915 strains with either a chromosomal catalytically inactive dinB(D103N) allele or a low-copy-number plasmid-borne dinB(+) upon DNA damage treatment. Furthermore, we find that the loss-of-survival phenotype occurs independently of DNA damage treatment in a dnaE915 strain expressing the catalytically inactive dinB(D103N) allele from a low-copy-number plasmid. The selective pressure imposed resulted in suppressor mutations that eliminated growth defects. The dinB intragenic mutations examined were either base pair substitutions or those that we inferred to be loss of function (i.e., deletions and insertions). Further analyses of selected novel dinB alleles, generated by single-base-pair substitutions in the dnaE915 strain, indicated that these no longer effect loss of survival upon overproduction in dnaE(+) strains. These mutations are mapped to specific areas of DinB; this permits us to gain insights into the mechanisms underlying the DinB-mediated overproduction loss-of-survival phenotype.


Assuntos
Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/fisiologia , Expressão Gênica , Viabilidade Microbiana , Seleção Genética , Alelos , Análise Mutacional de DNA , Proteínas de Escherichia coli/química , Modelos Moleculares , Mutagênese Insercional , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plasmídeos , Mutação Puntual , Conformação Proteica , Deleção de Sequência , Supressão Genética
4.
Environ Mol Mutagen ; 55(2): 92-102, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24243543

RESUMO

Alkylation DNA lesions are ubiquitous, and result from normal cellular metabolism as well as from treatment with methylating agents and chemotherapeutics. DNA damage tolerance by translesion synthesis DNA polymerases has an important role in cellular resistance to alkylating agents. However, it is not yet known whether Escherichia coli (E. coli) DNA Pol IV (DinB) alkylation lesion bypass efficiency and fidelity in vitro are similar to those inferred by genetic analyses. We hypothesized that DinB-mediated bypass of 3-deaza-3-methyladenine, a stable analog of 3-methyladenine, the primary replication fork-stalling alkylation lesion, would be of high fidelity. We performed here the first kinetic analyses of E. coli DinB•RecA binary complexes. Whether alone or in a binary complex, DinB inserted the correct deoxyribonucleoside triphosphate (dNTP) opposite either lesion-containing or undamaged template; the incorporation of other dNTPs was largely inefficient. DinB prefers undamaged DNA, but the DinB•RecA binary complex increases its catalytic efficiency on lesion-containing template, perhaps as part of a regulatory mechanism to better respond to alkylation damage. Notably, we find that a DinB derivative with enhanced affinity for RecA, either alone or in a binary complex, is less efficient and has a lower fidelity than DinB or DinB•RecA. This finding contrasts our previous genetic analyses. Therefore, mutagenesis resulting from alkylation lesions is likely limited in cells by the activity of DinB•RecA. These two highly conserved proteins play an important role in maintaining genomic stability when cells are faced with ubiquitous DNA damage. Kinetic analyses are important to gain insights into the mechanism(s) regulating TLS DNA polymerases.


Assuntos
Adutos de DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Recombinases Rec A/química , Adenina/análogos & derivados , Adenina/química , Alquilação , Adutos de DNA/genética , Replicação do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxicitosina/química , Nucleotídeos de Desoxiguanina/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Mutagênese , Nucleotídeos de Timina/química
5.
J Bacteriol ; 195(6): 1179-93, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23292773

RESUMO

The activity of DinB is governed by the formation of a multiprotein complex (MPC) with RecA and UmuD. We identified two highly conserved surface residues in DinB, cysteine 66 (C66) and proline 67 (P67). Mapping on the DinB tertiary structure suggests these are noncatalytic, and multiple-sequence alignments indicate that they are unique among DinB-like proteins. To investigate the role of the C66-containing surface in MPC formation, we constructed the dinB(C66A) derivative. We found that DinB(C66A) copurifies with its interacting partners, RecA and UmuD, to a greater extent than DinB. Notably, copurification of RecA with DinB is somewhat enhanced in the absence of UmuD and is further increased for DinB(C66A). In vitro pulldown assays also indicate that DinB(C66A) binds RecA and UmuD better than DinB. We note that the increased affinity of DinB(C66A) for UmuD is RecA dependent. Thus, the C66-containing binding surface appears to be critical to modulate interaction with UmuD, and particularly with RecA. Expression of dinB(C66A) from the chromosome resulted in detectable differences in dinB-dependent lesion bypass fidelity and homologous recombination. Study of this DinB derivative has revealed a key surface on DinB, which appears to modulate the strength of MPC binding, and has suggested a binding order of RecA and UmuD to DinB. These findings will ultimately permit the manipulation of these enzymes to deter bacterial antibiotic resistance acquisition and to gain insights into cancer development in humans.


Assuntos
DNA Polimerase beta/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Recombinases Rec A/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Recombinases Rec A/genética , Alinhamento de Sequência
6.
J Microbiol Methods ; 84(3): 479-81, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21185880

RESUMO

We use a powerful method to replace wild-type genes on the chromosome of Escherichia coli. Using a unique form of PCR, we generate easily constructible gene fusions bearing single point mutations. Used in conjunction with homologous recombination, this method eliminates cloning procedures previously used for this purpose.


Assuntos
Mapeamento Cromossômico/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genes Bacterianos , Genética Microbiana/métodos , Proteínas Mutantes/genética , Mutação Puntual , Fusão Gênica Artificial , Cromossomos Bacterianos , Biologia Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...