Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(5): 1125-1130, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38712757

RESUMO

There remains a critical need for new antibiotics against multi-drug-resistant Gram-negative bacteria, a major global threat that continues to impact mortality rates. Lipoprotein signal peptidase II is an essential enzyme in the lipoprotein biosynthetic pathway of Gram-negative bacteria, making it an attractive target for antibacterial drug discovery. Although natural inhibitors of LspA have been identified, such as the cyclic depsipeptide globomycin, poor stability and production difficulties limit their use in a clinical setting. We harness computational design to generate stable de novo cyclic peptide analogues of globomycin. Only 12 peptides needed to be synthesized and tested to yield potent inhibitors, avoiding costly preparation of large libraries and screening campaigns. The most potent analogues showed comparable or better antimicrobial activity than globomycin in microdilution assays against ESKAPE-E pathogens. This work highlights computational design as a general strategy to combat antibiotic resistance.


Assuntos
Antibacterianos , Desenho de Fármacos , Peptídeos Cíclicos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Lipoproteínas/antagonistas & inibidores , Proteínas de Bactérias , Peptídeos , Ácido Aspártico Endopeptidases
2.
Cryst Growth Des ; 24(7): 2985-3001, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38585376

RESUMO

A novel monoacylglycerol, 7.10 MAG, has been produced for use in the in meso (lipid cubic phase) crystallization of membrane proteins and complexes. 7.10 MAG differs from monoolein, the most extensively used lipid for in meso crystallization, in that it is shorter in chain length by one methylene and its cis olefinic bond is two carbons closer to the glycerol headgroup. These changes in structure alter the phase behavior of the hydrated lipid and the microstructure of the corresponding mesophases formed. Temperature-composition phase diagrams for 7.10 MAG have been constructed using small- and wide-angle X-ray scattering over a range of temperatures and hydration levels that span those used for crystallization. The phase diagrams include lamellar crystalline, fluid isotropic, lamellar liquid-crystalline, cubic-Ia3d, and cubic-Pn3m phases, as observed with monoolein. Conspicuous by its absence is the inverted hexagonal phase which is rationalized on the basis of 7.10 MAG's chemical constitution. The cubic phase prepared with the new lipid facilitates the growth of crystals that were used to generate high-resolution structures of intramembrane ß-barrel and α-helical proteins. Compatibility of fully hydrated 7.10 MAG with cholesterol and phosphatidylcholine means that these two lipids can be used as additives to optimize crystallogenesis in screening trials with 7.10 MAG as the host lipid.

3.
Sci Adv ; 9(26): eadf5799, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390210

RESUMO

Bacterial lipoproteins (BLPs) decorate the surface of membranes in the cell envelope. They function in membrane assembly and stability, as enzymes, and in transport. The final enzyme in the BLP synthesis pathway is the apolipoprotein N-acyltransferase, Lnt, which is proposed to act by a ping-pong mechanism. Here, we use x-ray crystallography and cryo-electron microscopy to chart the structural changes undergone during the progress of the enzyme through the reaction. We identify a single active site that has evolved to bind, individually and sequentially, substrates that satisfy structural and chemical criteria to position reactive parts next to the catalytic triad for reaction. This study validates the ping-pong mechanism, explains the molecular bases for Lnt's substrate promiscuity, and should facilitate the design of antibiotics with minimal off-target effects.


Assuntos
Aciltransferases , Parede Celular , Microscopia Crioeletrônica , Membrana Celular , Lipoproteínas
4.
J Med Chem ; 66(11): 7553-7569, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37235809

RESUMO

We tested a series of SQ109 analogues against Mycobacterium tuberculosis and M. smegmatis, in addition to determining their uncoupling activity. We then investigated potential protein targets, involved in quinone and cell wall biosynthesis, using "rescue" experiments. There was little effect of menaquinone on growth inhibition by SQ109, but there were large increases in the IC50 of SQ109 and its analogues (up to 20×) on addition of undecaprenyl phosphate (Up), a homologue of the mycobacterial decaprenyl (C50) diphosphate. Inhibition of an undecaprenyl diphosphate phosphatase, an ortholog of the mycobacterial phosphatase, correlated with cell growth inhibition, and we found that M. smegmatis cell growth inhibition could be well predicted by using uncoupler and Up-rescue results. We also investigated whether SQ109 was metabolized inside Mycobacterium tuberculosis, finding only a single metabolite, previously shown to be inactive. The results are of general interest since they help explain the mechanism of SQ109 in mycobacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Difosfatos/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Mycobacterium smegmatis
5.
Methods Mol Biol ; 2507: 241-271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773586

RESUMO

G protein-coupled receptors (GPCRs) play vital roles in human physiology and pathophysiology. This makes the elucidation of the high-resolution blueprints of these high value membrane proteins of crucial importance for the structure-based design of novel therapeutics. However, the production and crystallization of GPCRs for structure determination comes with many challenges.In this chapter, we provide a comprehensive protocol for expressing and purifying the thromboxane A2 receptor (TPR), an attractive therapeutic target, for use in structure studies. Guidelines for crystallizing the TPR are also included. Together, these procedures provide a template for generating crystal structures of the TPR and indeed other GPCRs in complex with pharmacologically interesting ligands.


Assuntos
Receptores Acoplados a Proteínas G , Receptores de Tromboxano A2 e Prostaglandina H2 , Cristalização/métodos , Cristalografia por Raios X , Humanos , Ligantes , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/isolamento & purificação , Receptores de Tromboxano A2 e Prostaglandina H2/química , Receptores de Tromboxano A2 e Prostaglandina H2/isolamento & purificação
6.
Front Microbiol ; 12: 788445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950121

RESUMO

Lipoproteins are some of the most abundant proteins in bacteria. With a lipid anchor to the cell membrane, they function as enzymes, inhibitors, transporters, structural proteins, and as virulence factors. Lipoproteins activate the innate immune system and have biotechnological applications. The first lipoprotein was described by Braun and Rehn in 1969. Up until recently, however, work on lipoproteins has been sluggish, in part due to the challenges of handling proteins that are anchored to membranes by covalently linked lipids or are membrane integral. Activity in the area has quickened of late. In the past 5 years, high-resolution structures of the membrane enzymes of the canonical lipoprotein synthesis pathway have been determined, new lipoprotein types have been discovered and the enzymes responsible for their synthesis have been characterized biochemically. This has led to a flurry of activity aimed at developing novel antibiotics targeting these enzymes. In addition, surface exposed bacterial lipoproteins have been utilized as candidate vaccine antigens, and their potential to act as self-adjuvanting antigens is increasingly recognized. A summary of the latest developments in lipoproteins and their synthesis, as well as how this information is being exploited for therapeutic purposes is presented here.

7.
Nat Commun ; 12(1): 4254, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253723

RESUMO

Lipoproteins serve diverse functions in the bacterial cell and some are essential for survival. Some lipoproteins are adjuvants eliciting responses from the innate immune system of the host. The growing list of membrane enzymes responsible for lipoprotein synthesis includes the recently discovered lipoprotein intramolecular transacylase, Lit. Lit creates a lipoprotein that is less immunogenic, possibly enabling the bacteria to gain a foothold in the host by stealth. Here, we report the crystal structure of the Lit enzyme from Bacillus cereus and describe its mechanism of action. Lit consists of four transmembrane helices with an extracellular cap. Conserved residues map to the cap-membrane interface. They include two catalytic histidines that function to effect unimolecular transacylation. The reaction involves acyl transfer from the sn-2 position of the glyceryl moiety to the amino group on the N-terminal cysteine of the substrate via an 8-membered ring intermediate. Transacylation takes place in a confined aromatic residue-rich environment that likely evolved to bring distant moieties on the substrate into proximity and proper orientation for catalysis.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Membrana Celular/metabolismo , Lipoproteínas/biossíntese , Acilação , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Sequência Conservada , Cisteína/metabolismo , Análise Mutacional de DNA , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Eur J Med Chem ; 210: 113062, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33310291

RESUMO

The bifunctional undecaprenol kinase/phosphatase (UdpK) is a small, prokaryotic, integral membrane kinase, homologous with Escherichia coli diacylglycerol kinase and expressed by the dgkA gene. In Gram-positive bacteria, UdpK is involved in the homeostasis of the bacterial undecaprenoid pool, where it converts undecaprenol to undecaprenyl phosphate (C55P) and also catalyses the reverse process. C55P is the universal lipid carrier and critical to numerous glycopolymer and glycoprotein biosynthetic pathways in bacteria. DgkA gene expression has been linked to facilitating bacterial growth and survival in response to environmental stressors, as well being implicated as a resistance mechanism to the topical antibiotic bacitracin, by providing an additional route to C55P. Therefore, identification of UdpK inhibitors could lead to novel antibiotic treatments. A combination of homology modelling and mutagenesis experiments on UdpK have been used to identify residues that may be involved in kinase/phosphatase activity. In this review, we will summarise recent work on the mechanism and substrate specificity of UdpK.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Antibacterianos/química , Inibidores Enzimáticos/química , Bactérias Gram-Positivas/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese
9.
IUCrJ ; 7(Pt 6): 1131-1141, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209324

RESUMO

Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.

10.
Chem Commun (Camb) ; 56(61): 8603-8606, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32618302

RESUMO

Undecaprenol-containing glycolipids (UCGs) are essential precursors of bacterial glycopolymers and glycoproteins. We report a novel semi-synthetic strategy to prepare labelled UCGs directly from undecaprenol. This one-size-fits-all approach offers a concise and efficient method for obtaining labelled-UCGs, which will allow new mechanistic studies and inhibitor screens to be performed on novel antibiotic targets.


Assuntos
Antibacterianos/química , Terpenos/química , Antibacterianos/síntese química , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Glicolipídeos/química , Bactérias Gram-Positivas/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plantas/química , Plantas/metabolismo , Terpenos/síntese química , Terpenos/metabolismo
11.
J Appl Crystallogr ; 53(Pt 3): 854-859, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32684901

RESUMO

The in meso in situ serial X-ray crystallography method was developed to ease the handling of small fragile crystals of membrane proteins and for rapid data collection on hundreds of microcrystals directly in the growth medium without the need for crystal harvesting. To facilitate mounting of these in situ samples on a goniometer at cryogenic or at room temperatures, two new 3D-printed holders have been developed. They provide for cubic and sponge phase sample stability in the X-ray beam and are compatible with sample-changing robots. The holders can accommodate a variety of window material types, as well as bespoke samples for diffraction screening and data collection at conventional macromolecular crystallography beamlines. They can be used for convenient post-crystallization treatments such as ligand and heavy-atom soaking. The design, assembly and application of the holders for in situ serial crystallography are described. Files for making the holders using a 3D printer are included as supporting information.

12.
J Appl Crystallogr ; 53(Pt 2): 530-535, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32280324

RESUMO

Digitonin has long been used as a mild detergent for extracting proteins from membranes for structure and function studies. As supplied commercially, digitonin is inhomogeneous and requires lengthy pre-treatment for reliable downstream use. Glyco-diosgenin (GDN) is a recently introduced synthetic surfactant with features that mimic digitonin. It is available in homogeneously pure form. GDN is proving to be a useful detergent, particularly in the area of single-particle cryo-electron microscopic studies of membrane integral proteins. With a view to using it as a detergent for crystallization trials by the in meso or lipid cubic phase method, it was important to establish the carrying capacity of the cubic mesophase for GDN. This was quantified in the current study using small-angle X-ray scattering for mesophase identification and phase microstructure characterization as a function of temperature and GDN concentration. The data show that the lipid cubic phase formed by hydrated monoolein tolerates GDN to concentrations orders of magnitude in excess of those used for membrane protein studies. Thus, having GDN in a typical membrane protein preparation should not deter use of the in meso method for crystallogenesis.

13.
J Mol Biol ; 432(18): 5104-5123, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32113953

RESUMO

The lipid cubic phase (LCP) has been used extensively as a medium for crystallizing membrane proteins. It is an attractive environment in which to perform such studies because it incorporates a lipid bilayer. It is therefore considered a useful and a faithful biomembrane mimetic. Here, we bring together evidence that supports this view. Biophysical characterizations are described demonstrating that the cubic phase is a porous medium into and out of which water-soluble molecules can diffuse for binding to and reaction with reconstituted proteins. The proteins themselves are shown to be functionally reconstituted into and to have full mobility in the bilayered membrane, a prerequisite for LCP crystallogenesis. Spectroscopic methods have been used to characterize the conformation and disposition of proteins in the mesophase. Procedures for performing activity assays on enzymes directly in the cubic phase have been reported. Specific examples described here include a kinase and two transferases, where quantitative kinetics and mechanism-defining measurements were performed directly or via a coupled assay system. Finally, ligand-binding assays are described, where binding to proteins in the mesophase membrane was monitored directly by eye and indirectly by fluorescence quenching, enabling binding constant determinations for targets with affinity values in the micromolar and nanomolar range. These results make a convincing case that the lipid bilayer of the cubic mesophase is an excellent membrane mimetic and a suitable medium in which to perform not only crystallogenesis but also biochemical and biophysical characterizations of membrane proteins.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Materiais Biomiméticos , Cristalografia , Ligantes , Ligação Proteica
14.
Methods Mol Biol ; 2127: 293-319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112330

RESUMO

The lipid cubic phases (LCP) have enabled the determination of many important high-resolution structures of membrane proteins such as G-protein-coupled receptors, photosensitive proteins, enzymes, channels, and transporters. However, harvesting the crystals from the glass or plastic plates in which crystals grow is challenging. The in meso in situ serial X-ray crystallography (IMISX) method uses thin plastic windowed plates that minimize LCP crystal manipulation. The method, which is compatible with high-throughput in situ measurements, allows systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without direct crystal harvesting. In this chapter, we describe an IMISX protocol for in situ serial X-ray data collection of LCP-grown crystals at both cryogenic and room temperatures which includes the crystallization setup, sample delivery, automated serial diffraction data collection, and experimental phasing. We also detail how the IMISX method was applied successfully for the structure determination of two novel targets-the undecaprenyl-pyrophosphate phosphatase BacA and the chemokine G-protein-coupled receptor CCR2A.


Assuntos
Coleta de Dados , Proteínas de Membrana/química , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Análise de Dados , Coleta de Dados/instrumentação , Coleta de Dados/métodos , Lasers , Luz , Lipídeos/química , Conformação Proteica , Síncrotrons , Difração de Raios X/instrumentação , Difração de Raios X/métodos
15.
Biochemistry ; 59(4): 627-634, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31894969

RESUMO

The V27A mutation confers adamantane resistance on the influenza A matrix 2 (M2) proton channel and is becoming more prevalent in circulating populations of influenza A virus. We have used X-ray crystallography to determine structures of a spiro-adamantyl amine inhibitor bound to M2(22-46) V27A and also to M2(21-61) V27A in the Inwardclosed conformation. The spiro-adamantyl amine binding site is nearly identical for the two crystal structures. Compared to the M2 "wild type" (WT) with valine at position 27, we observe that the channel pore is wider at its N-terminus as a result of the V27A mutation and that this removes V27 side chain hydrophobic interactions that are important for binding of amantadine and rimantadine. The spiro-adamantyl amine inhibitor blocks proton conductance in the WT and V27A mutant channels by shifting its binding site in the pore depending on which residue is present at position 27. Additionally, in the structure of the M2(21-61) V27A construct, the C-terminus of the channel is tightly packed relative to that of the M2(22-46) construct. We observe that residues Asp44, Arg45, and Phe48 face the center of the channel pore and would be well-positioned to interact with protons exiting the M2 channel after passing through the His37 gate. A 300 ns molecular dynamics simulation of the M2(22-46) V27A-spiro-adamantyl amine complex predicts with accuracy the position of the ligands and waters inside the pore in the X-ray crystal structure of the M2(22-46) V27A complex.


Assuntos
Adamantano/química , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/ultraestrutura , Adamantano/análogos & derivados , Adamantano/farmacologia , Aminas/metabolismo , Antivirais/farmacologia , Sítios de Ligação/genética , Cristalografia por Raios X/métodos , Farmacorresistência Bacteriana/genética , Farmacorresistência Viral/efeitos dos fármacos , Humanos , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Influenza Humana/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Mutação/genética , Radiografia/métodos , Proteínas da Matriz Viral/genética
16.
Nat Commun ; 11(1): 140, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919415

RESUMO

Antimicrobial resistance is a major global threat that calls for new antibiotics. Globomycin and myxovirescin are two natural antibiotics that target the lipoprotein-processing enzyme, LspA, thereby compromising the integrity of the bacterial cell envelope. As part of a project aimed at understanding their mechanism of action and for drug development, we provide high-resolution crystal structures of the enzyme from the human pathogen methicillin-resistant Staphylococcus aureus (MRSA) complexed with globomycin and with myxovirescin. Our results reveal an instance of convergent evolution. The two antibiotics possess different molecular structures. Yet, they appear to inhibit identically as non-cleavable tetrahedral intermediate analogs. Remarkably, the two antibiotics superpose along nineteen contiguous atoms that interact similarly with LspA. This 19-atom motif recapitulates a part of the substrate lipoprotein in its proposed binding mode. Incorporating this motif into a scaffold with suitable pharmacokinetic properties should enable the development of effective antibiotics with built-in resistance hardiness.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Macrolídeos/metabolismo , Staphylococcus aureus Resistente à Meticilina/enzimologia , Peptídeos/metabolismo , Sítios de Ligação/fisiologia , Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/fisiologia , Macrolídeos/farmacologia , Peptídeos/farmacologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína
17.
Commun Biol ; 1: 124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272004

RESUMO

De novo membrane protein structure determination is often limited by the availability of large crystals and the difficulties in obtaining accurate diffraction data for experimental phasing. Here we present a method that combines in situ serial crystallography with de novo phasing for fast, efficient membrane protein structure determination. The method enables systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without the need for direct crystal harvesting. The requisite data quality for experimental phasing is achieved by accumulating diffraction signals from isomorphous crystals identified post-data collection. The method works in all experimental phasing scenarios and is particularly attractive with fragile, weakly diffracting microcrystals. The automated serial data collection approach can be readily adopted at most microfocus macromolecular crystallography beamlines.

18.
Anal Chem ; 90(20): 12152-12160, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30180556

RESUMO

Label-free differential scanning fluorimetry (DSF) is a relatively new method for evaluating the stability of proteins. It can be used as a screening tool for downstream applications such as crystallization. The method is attractive in that it requires miniscule quantities of proteins, it can be performed using intrinsic tryptophan and tyrosine fluorescence, and, with the right equipment, it is easy to perform. To date, the method has been used with proteins in liquid solutions and dispersions. It was of interest to determine if DSF could be used with membrane proteins in the lipid cubic phase (LCP), which increasingly is being used for crystallization in support of structure-function studies. The cubic phase is viscous. Furthermore, in coexistence with excess aqueous solution, as happens during crystallization trials, it can become turbid and scatter light. The concern was that these features may render the mesophase unsuitable for DSF analysis. However, using lysozyme and four integral membrane proteins we demonstrate that the method works with all tested proteins in solution and in the LCP. Of note is the observation that some of the test membrane proteins are more stable while others are less so in the mesophase. The method also works in ligand binding measurements. Thus, DSF should prove useful as an analytical tool for identifying host and additive lipids, detergents, precipitants and chemical probes that support the generation of quality crystals by the cubic phase method. Microscale thermophoresis was used to supplement the DSF study and was also shown to work with proteins in the mesophase. Measurements with lysozyme highlight the utility of the cubic mesophase as a model system in which to perform confinement studies.


Assuntos
Fluorometria , Lipídeos/química , Proteínas de Membrana/química , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Galinhas , Escherichia coli/química , Muramidase/química , Estabilidade Proteica , Pseudomonas aeruginosa/química , Solubilidade , Temperatura
19.
Nat Commun ; 9(1): 1078, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540682

RESUMO

As a protective envelope surrounding the bacterial cell, the peptidoglycan sacculus is a site of vulnerability and an antibiotic target. Peptidoglycan components, assembled in the cytoplasm, are shuttled across the membrane in a cycle that uses undecaprenyl-phosphate. A product of peptidoglycan synthesis, undecaprenyl-pyrophosphate, is converted to undecaprenyl-phosphate for reuse in the cycle by the membrane integral pyrophosphatase, BacA. To understand how BacA functions, we determine its crystal structure at 2.6 Å resolution. The enzyme is open to the periplasm and to the periplasmic leaflet via a pocket that extends into the membrane. Conserved residues map to the pocket where pyrophosphorolysis occurs. BacA incorporates an interdigitated inverted topology repeat, a topology type thus far only reported in transporters and channels. This unique topology raises issues regarding the ancestry of BacA, the possibility that BacA has alternate active sites on either side of the membrane and its possible function as a flippase.


Assuntos
Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Pirofosfatases/química , Pirofosfatases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Estrutura Secundária de Proteína
20.
Cell Discov ; 4: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29560272

RESUMO

5-hydroxytryptamine (5-HT, also known as serotonin) regulates many physiological processes through the 5-HT receptor family. Here we report the crystal structure of 5-HT1B subtype receptor (5-HT1BR) bound to the psychotropic serotonin receptor inverse agonist methiothepin (MT). Crystallization was facilitated by replacing ICL3 with a novel optimized variant of BRIL (OB1) that enhances the formation of intermolecular polar interactions, making OB1 a potential useful tool for structural studies of membrane proteins. Unlike the agonist ergotamine (ERG), MT occupies only the conserved orthosteric binding pocket, explaining the wide spectrum effect of MT on serotonin receptors. Compared with ERG, MT shifts toward TM6 and sterically pushes residues W3276.48, F3306.50 and F3316.51 from inside the orthosteric binding pocket, leading to an outward movement of the extracellular end and a corresponding inward shift of the intracellular end of TM6, a feature shared by other reported inactive G protein-coupled receptor (GPCR) structures. Together with the previous agonist-bound serotonin receptor structures, the inverse agonist-bound 5-HT1BR structure identifies a basis for the ligand-mediated switch of 5-HT1BR activity and provides a structural understanding of the inactivation mechanism of 5-HT1BR and some other class A GPCRs, characterized by ligand-induced outward movement of the extracellular end of TM6 that is coupled with inward movement of the cytoplasmic end of this helix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...