Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(15): 3299-3312, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529796

RESUMO

Material relationships at low temperatures were determined for concentrated surfactant solutions using a combination of rheological experiments, cross-polarized microscopy, calorimetry, and small angle X-ray scattering. A lamellar structured 70 wt% solution of sodium laureth sulfate in water was used as a model system. At cold temperatures (5 °C and 10 °C), the formation of surfactant crystals resulted in extremely high viscosity. The bulk flow behavior of multi-lamellar vesicles (20 °C) and focal conic defects (90 °C) in the lamellar phase was similar. Shear-induced crystallization at temperatures higher than the equilibrium crystallization temperature range resulted in an unusual complex viscosity peak. The effects of processing-relevant parameters including temperature, cooling time, and applied shear were investigated. Knowledge of key low-temperature structure-property-processing relationships for concentrated feedstocks is essential for the sustainable design and manufacturing of surfactant-based consumer products for applications such as cold-water laundry.

2.
Langmuir ; 39(35): 12346-12356, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37616521

RESUMO

Rheological modifiers are used to tune rheology or induce phase transitions of products. Microfibrillated cellulose (MFC), a renewable material, has the potential to be used for rheological modification. However, the lack of studies on the evolution in rheological properties and structure during its phase transitions has prevented MFC from being added to consumer, fabric, and home care products. In this work, we characterize surface-oxidized MFC (OMFC), a negatively charged colloidal rod suspension. We measure the rheological properties and structure of OMFC during sol-gel phase transitions induced by either anionic or cationic surfactant using multiple particle tracking microrheology (MPT). MPT tracks the Brownian motion of fluorescent probe particles embedded in a sample, which is related to the sample's rheological properties. Using MPT, we measure that OMFC gelation evolution is dependent on the charge of the surfactant that induces the phase transition. OMFC gelation is gradual in anionic surfactant. In cationic surfactant, gelation is rapid followed by length scale-dependent colloidal fiber rearrangement. Initial OMFC concentration is directly related to how tightly associated the network is at the phase transition, with an increase in concentration resulting in a more tightly associated network with smaller pores. Bulk rheology measures that OMFC forms a stiffer structure but yields at lower strains in cationic surfactant than in anionic surfactant. This study characterizes the role of surfactant in inducing phase transitions, which can be used as a guide for designing future products.

3.
RSC Adv ; 12(20): 12902-12912, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35496333

RESUMO

Rheological modifiers tune product rheology with a small amount of material. To effectively use rheological modifiers, characterizing the rheology of the system at different compositions is crucial. Two colloidal rod system, hydrogenated castor oil and polyamide, are characterized in a formulation that includes a surfactant (linear alkylbenzene sulfonate) and a depletant (polyethylene oxide). We characterize both rod systems using multiple particle tracking microrheology (MPT) and bulk rheology and build phase diagrams over a large component composition space. In MPT, fluorescent particles are embedded in the sample and their Brownian motion is measured and related to rheological properties. From MPT, we determine that in both systems: (1) microstructure is not changed with increasing colloid concentration, (2) materials undergo a sol-gel transition as depletant concentration increases and (3) the microstructure changes but does not undergo a phase transition as surfactant concentration increases in the absence of depletant. When comparing MPT and bulk rheology results different trends are measured. Using bulk rheology we observe: (1) elasticity of both systems increase as colloid concentration increases and (2) the storage modulus does not change when PEO or LAS concentration is increased. The differences measured with MPT and bulk rheology are likely due to differences in sensitivity and measurement method. This work shows the utility of using both techniques together to fully characterize rheological properties over a large composition space. These gelation phase diagrams will provide a guide to determine the composition needed for desired rheological properties and eliminate trial-and-error experiments during product formulation.

4.
Sci Rep ; 7: 43496, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28290540

RESUMO

Many amorphous materials show spatially heterogenous dynamics, as different regions of the same system relax at different rates. Such a signature, known as Dynamic Heterogeneity, has been crucial to understand the nature of the jamming transition in simple model systems and is currently considered very promising to characterize more complex fluids of industrial and biological relevance. Unfortunately, measurements of dynamic heterogeneities typically require sophisticated experimental set-ups and are performed by few specialized groups. It is now possible to quantitatively characterize the relaxation process and the emergence of dynamic heterogeneities using a straightforward method, here validated on video microscopy data of hard-sphere colloidal glasses. We call this method Differential Variance Analysis (DVA), since it focuses on the variance of the differential frames, obtained subtracting images at different time-lags. Moreover, direct visualization of dynamic heterogeneities naturally appears in the differential frames, when the time-lag is set to the one corresponding to the maximum dynamic susceptibility. This approach opens the way to effectively characterize and tailor a wide variety of soft materials, from complex formulated products to biological tissues.

5.
Soft Matter ; 13(14): 2686-2697, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28332667

RESUMO

The stability of shapes formed by three viscoelastic droplets during their arrested coalescence has been investigated using micromanipulation experiments. Addition of a third droplet to arrested droplet doublets is shown to be controlled by the balance between interfacial pressures driving coalescence and internal elasticity that resists total consolidation. The free fluid available within the droplets controls the transmission of stress during droplet combination and allows connections to occur via formation of a neck between the droplets. The anisotropy of three-droplet systems adds complexity to the symmetric case of two-droplet aggregates because of the multiplicity of orientations possible for the third droplet. When elasticity dominates, the initial orientation of the third droplet is preserved in the triplet's final shape. When elasticity is dominated by the interfacial driving force, the final shape can deviate strongly from the initial positioning of droplets. Movement of the third droplet to a more compact packing occurs, driven by liquid meniscus expansion that minimizes the surface energy of the triplet. A range of compositions and orientations are examined and the resulting domains of restructuring and stability are mapped based on the final triplet structure. A geometric and a physical model are used to explain the mechanism driving meniscus-induced restructuring and are related to the impact of these phenomena on multiple droplet emulsions.

6.
Adv Mater ; 28(38): 8425-8430, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27479940

RESUMO

Fluorocarbon oil reinforced triple emulsion drops are prepared to encapsulate a broad range of polar and non-polar cargoes in a single platform. In addition, it is demonstrated that the fluorocarbon oil within the emulsion drop acts as an effective diffusion barrier, as well as a non-adhesive layer, enabling highly efficient encapsulation and retention of small molecules and active biomolecules in microcapsules.

7.
Philos Trans A Math Phys Eng Sci ; 374(2072)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298435

RESUMO

Arrested droplet coalescence produces stable anisotropic shapes and is a key mechanism for microstructure development in foods, petroleum and pharmaceutical formulations. Past work has examined the dynamic elastic arrest of coalescing monodisperse droplet doublets and developed a simple model of doublet strain as a function of physical variables. Although the work describes experimental data well, it is limited to describing same-size droplets. A new model incorporating a generalized description of doublet shape is developed to describe polydisperse doublet formation in more realistic emulsion systems. Polydisperse doublets are shown to arrest at lower strains than monodisperse doublets as a result of the smaller contribution of surface area in a given pair. Larger droplet size ratios have lower relative degrees of strain because coalescence is arrested at an earlier stage than in more monodisperse cases. Experimental observations of polydisperse doublet formation indicate that the model under-predicts arrest strains at low solid levels and small droplet sizes. The discrepancy is hypothesized to be the result of nonlinear elastic deformation at high strains.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.


Assuntos
Emulsões/química , Modelos Teóricos , Alcanos/química , Anisotropia , Elasticidade , Tamanho da Partícula , Propriedades de Superfície , Viscosidade , Ceras/química
8.
Adv Mater ; 28(17): 3340-4, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26932778

RESUMO

Triple emulsion drops with an ultrathin water layer are developed to achieve high encapsulation efficiency of hydrophobic cargo in a hydrophobic polymeric shell, directly dispersed in water. Furthermore, enhanced retention of volatile hydrophobic cargo is achieved by forming a hydrogel network within this water layer that serves as a physical barrier.

9.
ACS Appl Mater Interfaces ; 8(6): 4007-13, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26799189

RESUMO

Fragrances are amphiphilic and highly volatile, all of which makes them a challenging cargo to efficiently encapsulate and retain in microcapsules using traditional approaches. We address these limitations by introducing a new strategy that combines bulk and microfluidic emulsification: a stable fragrance-in-water (F/W) emulsion that is primarily prepared from bulk emulsification is incorporated within a polymer microcapsule via microfluidic emulsification. On the basis of the in-depth study of physicochemical properties of the microcapsules on fragrance leakage, we demonstrate that enhanced retention of fragrance can be achieved by using a polar polymeric shell and forming a hydrogel network within the microcapsule. We further extend the utility of these microcapsules by demonstrating the enhanced retention of encapsulated fragrance in powder state.

10.
Langmuir ; 31(31): 8558-65, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26177777

RESUMO

Micron-scale rod-shaped droplets with a range of aspect ratios are produced using extrusion of oil containing a soft wax crystal network to permit shape customization. A physical model of the droplet shape stability is developed based on balancing interfacial stresses with the internal crystal network yield stress. The model predicts the mechanical properties required for particular droplet size stability, in a given physicochemical environment, and is tested by microscopic observations of droplets over a range of relevant applied temperatures. The time-dependent response to temperature of individual rods is monitored and used to identify the collapse temperature based on structural yielding. Precise temperature control allows variation of the droplet endoskeleton yield stress and direct determination of the droplet stability as a function of size, by observing the onset of collapse by interfacial compression, and enables validation of the model predictions. Mapping the regions of droplet stability and instability for various-sized droplets yields a basis for designing droplet shapes for multiple applications using easily measured physical variables. The phenomenon of arrested collapse is also explored as a means of transforming simple rod-shaped starting materials into more complex shapes and enhancing adhesion to targeted solid surfaces, enabling exploitation of the hybrid solid-liquid nature of these droplets.


Assuntos
Alcanos/química , Vaselina/química , Temperatura , Anisotropia , Tamanho da Partícula , Propriedades de Superfície
11.
J Colloid Interface Sci ; 445: 231-242, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25622048

RESUMO

The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles.


Assuntos
Alcanos/química , Vaselina/química , Elasticidade , Transição de Fase , Tensão Superficial , Temperatura , Viscosidade , Água/química
12.
Soft Matter ; 10(38): 7647-52, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25134661

RESUMO

The delivery of suspended active ingredients to a surface is a central function of numerous commercial cosmetic, drug, and agricultural formulations. Many products use liquid droplets as a delivery vehicle but, because interfacial tension keeps droplets spherical, these materials cannot exploit the benefits of anisotropic shape and shape change offered by solid colloids. In this work, individual droplet manipulation is used to produce viscoelastic droplets that can stably retain non-spherical shapes by balancing the Laplace pressure of the liquid-liquid interface with the elasticity of an internal crystalline network. A stability criterion is developed for idealized spherocylindrical droplets and shown to agree with experimental data for varying droplet size and rheology. Shape change can be induced in the anisotropic droplets by upsetting the balance of droplet interfacial tension and internal rheology. Using dilution to increase the interfacial tension shows that external stimuli can trigger collapse and shape change in these droplets. The droplets wrap around substrates during collapse, improving contact and adhesion. The model is used to develop design criteria for production of droplets with tunable response.


Assuntos
Portadores de Fármacos/química , Anisotropia , Reologia , Tensão Superficial
13.
ACS Appl Mater Interfaces ; 6(11): 8066-72, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24827028

RESUMO

Magnetic beads (MBs) with ∼1.9 µm average diameter were used to transport specific microliter-scale volumes of liquids between adjacent reservoirs within a closed tube under the influence of a magnetic field. The tube's inner surface is coated with a hydrophobic layer, enabling the formation of a surface tension valve by inserting an air gap between reservoirs. This transfer process was implemented by keeping the MBs stationary with a fixed external magnet while the liquid reservoirs were translated by a computer-controlled syringe pump system. The magnet induces the aggregation of MBs in a loosely packed cluster (void volume ∼90-95%) against the tube's inner wall. The liquid trapped in the MB cluster is transported across the air gap between reservoirs. Fluorescence intensity from a dye placed in one reservoir is used to measure the volume of liquid transferred between reservoirs. The carry-over liquid volume is controlled by the mass of the MBs within the device. The typical volume of liquid carried by the MB cluster is ∼2 to 3 µL/mg of beads, allowing the use of small samples. This technique can be used to study the effect of small compositional variation on the properties of fluid mixtures. The feasibility of this "lab-in-tube" approach for binary phase diagram determination in a water-surfactant (C12E5) system was demonstrated.


Assuntos
Magnetismo , Microfluídica/instrumentação , Corantes Fluorescentes/química , Microscopia Eletrônica de Varredura
14.
Faraday Discuss ; 158: 341-50; discussion 351-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23234175

RESUMO

There are many new approaches to designing complex anisotropic colloids, often using droplets as templates. However, droplets themselves can be designed to form anisotropic shapes without any external templates. One approach is to arrest binary droplet coalescence at an intermediate stage before a spherical shape is formed. Further shape relaxation of such anisotropic, arrested structures is retarded by droplet elasticity, either interfacial or internal. In this article we study coalescence of structured droplets, containing a network of anisotropic colloids, whose internal elasticity provides a resistance to full shape relaxation and interfacial energy minimization during coalescence. Precise tuning of droplet elasticity arrests coalescence at different stages and leads to various anisotropic shapes, ranging from doublets to ellipsoids. A simple model balancing interfacial and elastic energy is used to explain experimentally observed coalescence arrest in viscoelastic droplets. During coalescence of structured droplets the interfacial energy is continuously reduced while the elastic energy is increased by compression of the internal structure and, when the two processes balance one another, coalescence is arrested. Experimentally we observe that if either interfacial energy or elasticity dominates, total coalescence or total stability of droplets results. The stabilization mechanism is directly analogous to that in a Pickering emulsion, though here the resistance to coalescence is provided via an internal volume-based, rather than surface, structure. This study provides guidelines for designing anisotropic droplets by arrested coalescence but also explains some observations of "partial" coalescence observed in commercial foods like ice cream and whipped cream.


Assuntos
Água/química , Ceras/química , Anisotropia , Elasticidade , Emulsões , Sorvetes/análise , Pressão , Termodinâmica
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 1): 041701, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22680486

RESUMO

Droplet breakup of many Newtonian fluids is well described by current experiments, theory, and simulations. Breakup in complex fluids where interactions between mesoscopic structural features can affect the flows remains poorly understood and a burgeoning area of research. Here, we report on our investigations of droplet breakup in thermotropic liquid crystals. We investigate breakup in the smectic, nematic, and isotropic phases of 4-cyano 4-octylbiphenyl (8CB) and the nematic and isotropic phases of 4-cyano 4-pentylbiphenyl (5CB). The experiment consists of varying the ambient temperature to control liquid crystalline phase and imaging breakup using a fast video camera at up to 110000 frames/s. We expand on previous work [John R. Savage et al., Soft Matter 6, 892 (2010)] that shows breakup in the smectic phase is symmetric, producing no satellite droplets, and is well described by a similarity solution for a shear-thinning power-law fluid. We show that in the nematic phase the breakup occurs in two stages. In the first stage, the breakup is symmetric and the power-law exponent for the minimum radius dependence on the time left to breakup is 1.2

Assuntos
Cristais Líquidos/química , Microfluídica/métodos , Modelos Químicos , Modelos Moleculares , Soluções/química , Simulação por Computador , Transição de Fase , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...