Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 58(11): 7243-7254, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30998003

RESUMO

Six new uranyl hybrid materials have been synthesized solvothermally utilizing the ligands 2,2'-bipyridine-3,3'-dicarboxylic acid (H2L) and 2,2':6',2''-terpyridine (TPY). The six compounds are classified as either molecular complexes (I0O0 connectivity), [(UO2)(L)(TPY)]·H2O (1), [Ni(TPY)2][(UO2)(L)2]·3H2O (2), and [Cu(TPY)2][(UO2)(L)2]·3H2O (3), or 3D metal-organic frameworks (MOFs, I0O3 connectivity), [Cu2(UO2)2(OH)(C2H3O2)(L)3(TPY)2]·6H2O (4), [Zn2(UO2)2(OH)(NO3)(C2H3O2)(L)3(TPY)2]·4H2O (5), and Na[Ni(UO2)3(OH)(O)(L)3]·9H2O (6). A discussion of the influence of transition metal incorporation, chelating effects of the ligand, and synthesis conditions on the formation of uranyl materials is presented. The structure of compound 6 is of particular note due to large channel-like voids with a diameter of approximately 19.6 Å. A topological analysis of 6 reveals a new topology with a 9-nodal 3,3,3,3,3,3,3,4,5-connected network, designated geg1 hereafter. Further, solid state photoluminescence experiments show emission and lifetimes values consistent with related uranyl compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA