Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508006

RESUMO

Continuous discharge of wastewater, emissions, and solid wastes from steelworks poses environmental risks to ecosystems. However, the role of keystone taxa in maintaining multifunctional stability during environmental disturbances remains poorly understood. To address this, we investigated the community diversity, assembly mechanisms, and soil multifunctionality of soils collected from within the steelworks (I), within 2.5 km radius from the steelworks (E), and from an undisturbed area (CK) in Jiangsu Province, China, via 16 S rRNA sequencing. Significant differences were found in the Chao1 and the richness indexes of the total taxa (p < 0.05), while the diversity of keystone taxa was not significant at each site (p > 0.05). The deterministic processes for total taxa were 42.9%, 61.9% and 47.7% in CK, E, and I, respectively. Steelworks stress increased the deterministicity of keystone taxa from 52.3% in CK to 61.9% in E and I soils. The average multifunctionality indices were 0.518, 0.506 and 0.513 for CK, E and I, respectively. Although the soil multifunctionality was positive correlated with α diversity of both the total and keystone taxa, the average degree of keystone taxa in functional network increased significantly (79.96 and 65.58, respectively), while the average degree of total taxa decreased (44.59 and 51.25, respectively) in the E and I. This suggests keystone taxa contribute to promoting the stability of ecosystems. With increasing disturbance, keystone taxa shift their function from basic metabolism (ribosome biogenesis) to detoxification (xenobiotics biodegradation, metabolism, and benzoate degradation). Here we show that keystone taxa are the most important factor in maintaining stable microbial communities and functions, providing new insights for mitigating pollution stress and soil health protection.


Assuntos
Microbiota , Solo , Microbiologia do Solo , Bactérias/genética , Poluição Ambiental
2.
Environ Int ; 179: 108175, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37683504

RESUMO

Organic fertilizer microbiomes play substantial roles in soil ecological functions, including improving soil structure, crop yield, and pollutant dissipation. However, limited information is available about the ecological functions of phages and phage-encoded auxiliary metabolic genes (AMGs) in orga9nic fertilizers. Here we used a combination of metagenomics and phage transplantation trials to investigate the phage profiles and their potential roles in pesticide degradation in four organic fertilizers from different sources. Phage annotation results indicate that the two vermicomposts made from swine (PV) and cattle (CV) dung had more similar phage community structures than the swine (P) and cattle (C) manures. After vermicomposting, the organic fertilizers (PV and CV) exhibited enriched phage-host pairings and phage AMG diversity in relative to the two organic fertilizers (P and C) without composting. In addition, the number of broad-host-range phages in the vermicomposts (182) was higher than that in swine (153) and cattle (103) manures. Notably, phage AMGs associated with metabolism and pesticide biodegradation were detected across the four organic fertilizers. The phage transplantation demonstrated that vermicompost phages were most effective at facilitating the degradation of pesticide precursor p-nitrochlorobenzene (p-NCB) in soil, as compared to swine and cattle manures (P < 0.05). Taken together, our findings highlight the significance of phages in vermicompost for biogeochemical cycling and biodegradation of pesticide-associated chemicals in contaminated soils.


Assuntos
Bacteriófagos , Praguicidas , Animais , Bovinos , Suínos , Praguicidas/toxicidade , Fertilizantes , Bacteriófagos/genética , Biodegradação Ambiental , Esterco , Solo
3.
Sci Total Environ ; 874: 162562, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36871728

RESUMO

The response mechanism of soil microbiota in military polluted sites can effectively indicate the biotoxicity of ammunition. In this study, two military demolition ranges polluted soils of grenades and bullet were collected. According to high-throughput sequencing, after grenade explosion, the dominant bacteria in Site 1 (S1) are Proteobacteria (97.29 %) and Actinobacteria (1.05 %). The dominant bacterium in Site 2 (S2) is Proteobacteria (32.95 %), followed by Actinobacteria (31.17 %). After the military exercise, the soil bacterial diversity index declined significantly, and the bacterial communities interacted more closely. The indigenous bacteria in S1 were influenced more compared to those in S2. According to the environmental factor analysis, the bacteria composition can easily be influenced by heavy metals and organic pollutants, including Cu, Pb, Cr and Trinitrotoluene (TNT). About 269 metabolic pathways annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were detected in bacterial communities, including nutrition metabolism (C, 4.09 %; N, 1.14 %; S, 0.82 %), external pollutant metabolism (2.52 %) and heavy metal detoxication (2.12 %), respectively. The explosion of ammunition changes the basic metabolism of indigenous bacteria, and heavy metal stress inhibits the TNT degradation ability of bacterial communities. The pollution degree and community structure influence the metal detoxication strategy at the contaminated sites together. Heavy metal ions in S1 are mainly discharged through membrane transporters, while heavy metal ions in S2 are mainly degraded through lipid metabolism and biosynthesis of secondary metabolites. The results obtained in this study can provide deep insight into the response mechanism of the soil bacterial community in military demolition ranges with composite pollutions of heavy metals and organic substances. CAPSULE: Heavy metal stress changed the composition, interaction and metabolism of indigenous communities in military demolition ranges, especially the TNT degradation process.


Assuntos
Actinobacteria , Metais Pesados , Militares , Poluentes do Solo , Humanos , Solo/química , Metais Pesados/análise , Bactérias/metabolismo , Proteobactérias/metabolismo , Actinobacteria/metabolismo , China , Poluentes do Solo/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA