Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 276: 116305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599158

RESUMO

The heavy metal(loid)s (HMs) in soils can be accumulated by crops grown, which is accompanied by crop ingestion into the human body and then causes harm to human health. Hence, the health risks posed by HMs in three crops for different populations were assessed using Health risk assessment (HRA) model coupled with Monte Carlo simulation. Results revealed that Zn had the highest concentration among three crops; while Ni was the main polluting element in maize and soybean, and As in rice. Non-carcinogenic risk for all populations through rice ingestion was at an "unacceptable" level, and teenagers suffered higher risk than adults and children. All populations through ingestion of three crops might suffer Carcinogenic risk, with the similar order of Total carcinogenic risk (TCR): TCRAdults > TCRTeenagers > TCRChildren. As and Ni were identified as priority control HMs in this study area due to their high contribution rates to health risks. According to the HRA results, the human health risk was associated with crop varieties, HM species, and age groups. Our findings suggest that only limiting the Maximum allowable intake rate is not sufficient to prevent health risks caused by crop HMs, thus more risk precautions are needed.


Assuntos
Minas de Carvão , Produtos Agrícolas , Metais Pesados , Poluentes do Solo , Humanos , China , Medição de Risco , Metais Pesados/análise , Poluentes do Solo/análise , Adolescente , Criança , Adulto , Adulto Jovem , Níquel/análise , Níquel/toxicidade , Contaminação de Alimentos/análise , Monitoramento Ambiental , Método de Monte Carlo , Oryza , Pré-Escolar , Zea mays , Glycine max , Feminino , Arsênio/análise , Masculino
2.
J Hazard Mater ; 468: 133745, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401211

RESUMO

The study of heavy metal(loid) (HM) contamination in soil using extensive data obtained from published literature is an economical and convenient method. However, the uneven distribution of these data in time and space limits their direct applicability. Therefore, based on the concentration data obtained from the published literature (2000-2020), we investigated the relationship between soil HM accumulation and various anthropogenic activities, developed a hybrid model to predict soil HM concentrations, and then evaluated their ecological risks. The results demonstrated that various anthropogenic activities were the main cause of soil HM accumulation using Geographically and temporally weighted regression (GTWR) model. The hybrid Co-kriging + GTWR model, which incorporates two of the most influential auxiliary variables, can improve the accuracy and reliability of predicting HM concentrations. The predicted concentrations of eight HMs all exceeded the background values for soil environment in China. The results of the ecological risk assessment revealed that five HMs accounted for more than 90% of the area at the "High risk" level (RQ ≥ 1), with the descending order of Ni (100%) = Cu (100%) > As (98.73%) > Zn (95.50%) > Pb (94.90%). This study provides a novel approach to environmental pollution research using the published data.

3.
Environ Pollut ; 344: 123319, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185361

RESUMO

Recently, intensive anthropogenic activities, while promoting economic growth, have also exacerbated soil trace metal(loid) (TM) pollution. To explore the impact of economic development on soil TM pollution, a time-weighted method was introduced to calculate the average concentrations of eight TMs in Chinese topsoil from 2001 to 2020, and panel data on TMs and economic factors of 31 provinces were used for regression analysis. The results revealed that the average concentrations of soil TMs all exceeded their respective soil background values. Meanwhile, the spatial distribution of soil TMs was characterized by obvious regional heterogeneity, with economically developed areas being heavily polluted and having high ecological risks. In addition, the results derived from panel data models showed that the relationship between soil TM pollution and economic development in China presented a continuous growth curve, but with an N-shaped pattern in eastern China, a U-shaped pattern in central China, and a positive linearity in western China. Four control variables were also introduced to evaluate their impact on TM pollution, and the results indicated that the proportion of secondary industry and the road area per capita were the major influencing factors. Ultimately, the inflection point estimation results suggested that the soil TM pollution level will increase in eastern China, central China and western China with ongoing economic growth. Our findings contribute to the current understanding of the relationship between soil TM pollution and anthropogenic activities, and provide a scientific basis for adjusting and planning industrial development and layout according to the characteristics of soil TM pollution.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Solo , Metais Pesados/análise , Desenvolvimento Econômico , Poluentes do Solo/análise , China , Oligoelementos/análise , Monitoramento Ambiental/métodos , Medição de Risco
4.
Sci Total Environ ; 905: 167218, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734621

RESUMO

Rapid urbanization has accelerated the accumulation of trace metal(loid)s (TMs) in soils, but the relationship between this accumulation and human activities remains largely unknown. Therefore, based on 775 published literatures (2001-2020), this study aimed to identify the influence of human activities on TM accumulation. Results showed that all soil TM concentrations were higher than their corresponding Chinese soil background values. The pollution risk assessment indicated that the soil TMs in the study area were at moderate levels, and the value of Pollution load index was 2.10. According to the assessment of health risks, the non-carcinogenic risks for adults were at the "Negligible risk" level; while the carcinogenic risk was not negligible for all populations, with children being more susceptible than adults. Meanwhile, six high-risk TMs were identified based on the grading of Contaminating factors (CF ≥ 3) and contribution to health risk (≥ 75%), including four high pollution risk TMs (Cd, Hg, Cu, and Pb) and two high health risk TMs (Cr and As) . In addition, in accordance with the results of the Random forest model, the accumulation of soil high-risk TMs was closely related to influencing factors associated with human activities. The accumulation of Hg and Cr among five major urban agglomerations had the same influencing factors (the number of industrial companies and the amount of industrial wastewater discharge for Hg; the amount of pesticide application and highway mileage for Cr). However, there were significant differences in the factors influencing the accumulation of the other four high-risk TMs (including Cd, As, Cu and Pb), due to the different characteristics of each urban agglomeration. Our results provide new insights into the relationship between human activities and soil TM accumulation.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Oligoelementos , Criança , Adulto , Humanos , Metais Pesados/análise , Monitoramento Ambiental , Poluentes do Solo/análise , Solo , Cádmio , Chumbo , Medição de Risco , Atividades Humanas , China
5.
J Hazard Mater ; 458: 131919, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37402323

RESUMO

Trace metal(loid)s (TMs) in soils may pose potential health risks to humans. Due to model uncertainty and variability of exposure parameters, the traditional health risk assessment (HRA) model may lead to inaccurate risk assessment results. Therefore, this study developed an improved HRA model to assess health risks by combining two-dimensional Monte Carlo simulation (2-D MCS) with a Logistic Chaotic sequence based on published data from 2000 to 2021. The results showed children and adult females were the high-risks populations for Non-carcinogenic risk and Carcinogenic risk, respectively. Meanwhile, children's Ingestion rate (IngR < 160.233 mg/day) and adult females' Skin adherence factor (0.026 mg/(cm2•d) < AF < 0.263 mg/(cm2•d)) were used as recommended exposure to make the health risk within acceptable range. Additionally, when performing risk assessment using actual exposure parameters, priority control TMs were identified, with As being the priority control TM for Southwest China and Inner Mongolia, whereas Cr and Pb for Tibet and Yunnan, respectively. Compared to health risk assessment, improved models increased risk assessment accuracy and provided recommended exposure parameter for high-risk populations. This study will provide new insights for soil-related health risk assessment.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Criança , Adulto , Feminino , Humanos , Metais Pesados/toxicidade , Metais Pesados/análise , Monitoramento Ambiental , Solo , Poluentes do Solo/análise , China , Medição de Risco , Carcinógenos/análise
6.
J Hazard Mater ; 446: 130613, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584651

RESUMO

Soil Cd pollution is the result of the combined influence of various human activities over a long period of time, and then quantifying the influence is essential for the prevention and control. Based on published literature data during 2000-2020, this study investigated the pollution characteristics and influencing factors of soil Cd in the Yangtze River Delta. The results were as follows: (1) The average Cd concentration was higher than the Chinese soil criteria value (0.30 mg/kg), and the proportion of Cd concentration exceeding its background value was 87.43%. (2) The assessment results using Contamination factor (CF) and Geo-accumulation index (Igeo) indicated that the soil Cd pollution risk could not negligible in the study area. (3) The pollution center shifted significantly owing to the combined effect of human activities. (4) The main influencing factors of Cd pollution obtained by Geographically and temporally weighted regression (GTWR) model were GDP per capita, Consumption of chemical fertilizer, Output value of primary industry, and Output value of secondary industry, but there were significant differences in the dominant factors for different provinces. Our findings contribute to the current understanding of the relationship between Cd pollution and human activities, and provide a scientific basis for pollution control.

7.
Environ Pollut ; 309: 119772, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35843449

RESUMO

Recently, with the rapid development of China's economy, the pollution of trace metal(loid)s (TMs) in soils has become increasingly severe and attracted widespread attention. Based on 1,402 published papers from 2000 to 2021, this study aimed to analyze the pollution intensity, ecological risk and driving factors for eight TMs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in Chinese soils. Results showed that the average concentrations of eight TMs in Chinese soils all exceeded background values, and the pollution of Cd and Hg was the most serious. Based on Principal component analysis of pollution intensity and ecological risk, the priority control TMs were identified for the heavily polluted provinces. The results of Geo-detector model suggested that Urban development factors contributed most to the TM accumulation in Chinese soils. Further, spatial analysis using bivariate Moran's I indicated that industrial activities contributed most to soil TM accumulation in the middle and lower reaches of the Yangtze River, while soil TM pollution in the southwest and northwest provinces was mainly caused by mining and metal smelting. This study investigated the relationship between soil TM pollution and anthropogenic activities, thus providing a scientific basis for controlling soil TM pollution at a large-scale level.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Oligoelementos , Cádmio/análise , China , Monitoramento Ambiental/métodos , Mercúrio/análise , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Oligoelementos/análise
8.
J Hazard Mater ; 423(Pt A): 127116, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34523487

RESUMO

Trace metal(loid)s (TMs) in soils can seriously threaten the ecological environment and human health. With the limitation of resources and costs, determining priority control factor is critical for managing soil TM pollution. To explore the pollution characteristics, source apportionment, and human health risk of TMs, a total of 209 surface soil samples were collected from Anqing City, China. Results showed that all the average values of TM concentration, except for Cr, were higher than their corresponding background value. Using a Positive matrix factorization model coupled with Correlation analysis, four sources (including agricultural sources, atmospheric deposition sources, industrial sources, and natural sources) were identified as the determinants for the accumulation of soil TMs, with the contribution rates of 12.4%, 8.1%, 64.1%, and 15.4%, respectively. The assessment of probabilistic health risks revealed that Non- carcinogenic risks of all populations were acceptable (HI < 1), while Carcinogenic risks were all at a high level (TCR > 10E-04). Agricultural pollution and As were identified as priority control factors, according to the analysis results of the relationship among TMs, pollution sources and health risks. Our findings provide scientific support for decision-makers to formulate target control policies and reduce management costs of soil pollution.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...