Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioresour Technol ; 402: 130802, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718902

RESUMO

A cost-effective, and low-energy room-temperature cascade catalytic carbonization strategy is demonstrated for converting lignin into graphite with a high yield of 87 %, a high surface potential of -37 eV and super-hydrophilicity. This super-hydrophilic feature endows the lignin-derived graphite to be dispersed in a variety of polar solvents, which is important for its future applications. Encapsulating of liquid metals with the graphite for electrical circuit patterning on flexible substrates is also advocated. These written patterns show superb conductivity of 4.9 × 106 S/m, offering good performance stability and reliability while being repeatedly stretched, folded, twisted, and bent. This will offer new designs for flexible electronic devices, sensors, and biomedical devices.

2.
Nanomicro Lett ; 16(1): 170, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592515

RESUMO

Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration, even attaining tactile perception capabilities surpassing human skin. However, the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction. Inspired by the innate biphasic structure of human subcutaneous tissue, this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding. Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation, and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young's modulus (6.8-281.9 kPa) and high tensile properties (880%) compatible with human skin. The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties (peel strength > 70 N m-1). The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object, which greatly ensures the high fidelity and reliability of soft tactile sensing signals. This strategy, enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials, presents a universal platform for broad applications from soft robots to wearable electronics.

3.
J Cancer ; 15(9): 2505-2517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577598

RESUMO

Malignant neoplasms pose a formidable threat to human well-being. Prior studies have documented the extensive expression of B7 homolog 3 (B7-H3 or CD276) across various tumors, affecting glucose metabolism. Yet, the link between metabolic modulation and immune responses remains largely unexplored. Our study reveals a significant association between B7-H3 expression and advanced tumor stages, lymph node metastasis, and tumor location in oral squamous cell carcinoma (OSCC). We further elucidate B7-H3's role in mediating glucose competition between cancer cells and CD8+ T cells. Through co-culturing tumor cells with flow cytometry-sorted CD8+ T cells, we measured glucose uptake and lactate secretion in both cell types. Additionally, we assessed interferon-gamma (IFN-γ) release and the immune and exhaustion status of CD8+ T cells. Our findings indicate that B7-H3 enhances glycolysis in OSCC and malignant melanoma, while simultaneously inhibiting CD8+ T cell glycolysis. Silencing B7-H3 led to increased IFN-γ secretion in co-cultures, highlighting its significant role in modulating CD8+ T cell functions within the tumor microenvironment and its impact on tumorigenicity. We also demonstrate that glycolysis inhibition can be mitigated by exogenous glucose supplementation. Mechanistically, our study suggests B7-H3's influence on metabolism might be mediated through the phosphoinositide3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) signaling pathway. This research unveils how B7-H3 affects immune functions via metabolic reprogramming.

4.
Nano Lett ; 24(10): 3273-3281, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427598

RESUMO

As intelligent technology surges forward, wearable electronics have emerged as versatile tools for monitoring health and sensing our surroundings. Among these advancements, porous triboelectric materials have garnered significant attention for their lightness. However, these materials face the challenge of improving structural stability to further enhance the sensing accuracy of triboelectric sensors. In this study, a lightweight and strong porous cellulosic triboelectric material is designed by cell wall nanoengineering. By tailoring of the cell wall structure, the material shows a high mechanical strength of 51.8 MPa. The self-powered sensor constructed by this material has a high sensitivity of 33.61 kPa-1, a fast response time of 36 ms, and excellent pressure detection durability. Notably, the sensor still enables a high sensing performance after the porous cellulosic triboelectric material exposure to 200 °C and achieves real-time feedback of human motion, thereby demonstrating great potential in the field of wearable electronic devices.


Assuntos
Parede Celular , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica , Movimento (Física) , Porosidade
5.
Nano Lett ; 24(12): 3826-3834, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498923

RESUMO

Lightweight, easily processed, and durable polymeric materials play a crucial role in wearable sensor devices. However, achieving simultaneously high strength and toughness remains a challenge. This study addresses this by utilizing an ion-specific effect to control crystalline domains, enabling the fabrication of a polymeric triboelectric material with tunable mechanical properties. The dense crystal-domain cross-linking enhances energy dissipation, resulting in a material boasting both high tensile strength (58.0 MPa) and toughness (198.8 MJ m-3), alongside a remarkable 416.7% fracture elongation and 545.0 MPa modulus. Leveraging these properties, the material is successfully integrated into wearable self-powered devices, enabling real-time feedback on human joint movement. This work presents a valuable strategy for overcoming the strength-toughness trade-off in polymeric materials, paving the way for their enhanced applicability and broader use in diverse sensing applications.

6.
Adv Mater ; 36(16): e2311993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183330

RESUMO

Electronic waste is a growing threat to the global environment and human health, raising particular concerns. Triboelectric devices synthesized from sustainable and degradable materials are a promising electronic alternative, but the mechanical mismatch at the interface between the polymer substrate and the electrodes remains unresolved in practical applications. This study uses the sulfhydryl silanization reaction and the chemical selectivity and site specificity of the thiol-disulfide exchange reaction in dynamic covalent chemistry to prepare a tough monolithic-integrated triboelectric bioplastic. The stress is dissipated by covalent bond adaptation to the interface interaction, which makes the polymer dielectric layer to the conductive layer have a good interface adhesion effect (220.55 kPa). The interfacial interlocking of the polymer substrate with the conductive layer gives the triboelectric bioplastic excellent tensile strength (87.4 MPa) and fracture toughness (33.3 MJ m-3). Even when subjected to a tension force of 10 000 times its weight, it still maintains a stable triboelectric output with no visible cracks. This study provides new insights into the design of reliable and environmentally friendly self-powered devices, which is significant for the development of flexible wearable electronics.

7.
Small ; 20(16): e2307504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38018269

RESUMO

Triboelectric materials present great potential for harvesting huge amounts of dispersed energy, and converting them directly into useful electricity, a process that generates power more sustainably. Triboelectric nanogenerators (TENGs) have emerged as a technology to power electronics and sensors, and it is expected to solve the problem of energy harvesting and self-powered sensing from extreme environments. In this paper, a high-temperature-resistant triboelectric material is designed based on multilevel non-covalent bonding interactions, which achieves an ultra-high surface charge density of 192 µC m-2 at high temperatures. TENGs based on the triboelectric material exhibit more than an order of magnitude higher power output (2750 mW m-2 at 200 °C) than the existing devices at high temperatures. These remarkable properties are achieved based on enthalpy-driven molecular assembly in highly unbonded states. Thus, the material maintains bond strength and ultra-high surface charge density in entropy-dominated high-temperature environments. This molecular design concept points out a promising direction for the preparation of polymers with excellent triboelectric properties.

8.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333280

RESUMO

Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While we know how color information is processed in visual brain areas of primates, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of mouse natural scenes. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. This type of color-opponency in the receptive field center was not present at the level of the retinal output and, therefore, is likely computed in the cortex by integrating upstream visual signals. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of "predatory"-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species. More broadly, they support the hypothesis that visual cortex combines upstream information towards computing neuronal selectivity to behaviorally-relevant sensory features.

9.
Nanomicro Lett ; 15(1): 124, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166487

RESUMO

With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human-machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.

10.
Biol Res ; 56(1): 26, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37211600

RESUMO

Previous studies have shown that peripheral nerve injury can lead to abnormal dendritic spine remodeling in spinal dorsal horn neurons. Inhibition of abnormal dendritic spine remodeling can relieve neuropathic pain. Electroacupuncture (EA) has a beneficial effect on the treatment of neuropathic pain, but the specific mechanism remains unclear. Evidence has shown that slit-robo GTPase activating protein 3 (srGAP3) and Rho GTPase (Rac1) play very important roles in dendritic spine remodeling. Here, we used srGAP3 siRNA and Rac1 activator CN04 to confirm the relationship between SrGAP3 and Rac1 and their roles in improving neuropathic pain with EA. Spinal nerve ligation (SNL) was used as the experimental model, and thermal withdrawal latency (TWL), mechanical withdrawal threshold (MWT), Western blotting, immunohistochemistry and Golgi-Cox staining were used to examine changes in behavioral performance, protein expression and dendritic spines. More dendritic spines and higher expression levels of srGAP3 were found in the initial phase of neuropathic pain. During the maintenance phase, dendritic spines were more mature, which was consistent with lower expression levels of srGAP3 and higher expression levels of Rac1-GTP. EA during the maintenance phase reduced the density and maturity of dendritic spines of rats with SNL, increased the levels of srGAP3 and reduced the levels of Rac1-GTP, while srGAP3 siRNA and CN04 reversed the therapeutic effects of EA. These results suggest that dendritic spines have different manifestations in different stages of neuropathic pain and that EA may inhibit the abnormal dendritic spine remodeling by regulating the srGAP3/Rac1 signaling pathway to alleviate neuropathic pain.


Assuntos
Eletroacupuntura , Neuralgia , Animais , Ratos , Espinhas Dendríticas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Proteínas rac1 de Ligação ao GTP/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Nervos Espinhais/metabolismo
11.
Adv Sci (Weinh) ; 10(15): e2206243, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36967572

RESUMO

The rapid rise of triboelectric nanogenerators (TENGs), which are emerging energy conversion devices in advanced electronics and wearable sensing systems, has elevated the interest in high-performance and multifunctional triboelectric materials. Among them, cellulosic materials, affording high efficiency, biodegradability, and customizability, are becoming a new front-runner. The inherently low dielectric constant limits the increase in the surface charge density. However, owing to its unique structure and excellent processability, cellulose shows great potential for dielectric modulation, providing a strong impetus for its advanced applications in the era of Internet of Things and artificial intelligence. This review aims to provide comprehensive insights into the fabrication of dielectric-enhanced cellulosic triboelectric materials via dielectric modulation. The exceptional advantages and research progress in cellulosic materials are highlighted. The effects of the dielectric constant, polarization, and percolation threshold on the charge density are systematically investigated, providing a theoretical basis for cellulose dielectric modulation. Typical dielectric characterization methods are introduced, and their technical characteristics are analyzed. Furthermore, the performance enhancements of cellulosic triboelectric materials endowed by dielectric modulation, including more efficient energy harvesting, high-performance wearable electronics, and impedance matching via material strategies, are introduced. Finally, the challenges and future opportunities for cellulose dielectric modulation are summarized.

12.
Adv Mater ; 35(7): e2209117, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427265

RESUMO

Tactile sensors with visible light feedback functions, such as wearable displays and electronic skin and biomedical devices, are becoming increasingly important in various fields. However, existing methods cannot meet the application requirements for the tactile perception of intensity feedback and extended intersection due to their limited light-mapping performance and insufficient portability. Herein, a freely constructible self-powered visual tactile sensor is proposed, which consists of a high-output triboelectric nanogenerator (TENG) and a visual light source. The transferred charge of the TENG is enhanced to 746 nC by the structural design of the triboelectric material and device, which can easily drive the light source to generate a light signal with a brightness of 9.8 cd m-2 . Notably, the application of the TENG enables to realization visual sensing of the palm-grasp state and strength feedback without an external power supply. This visual feedback and power-free tactile sensors are expected to have potential application in the field of artificial intelligence as a new interactive medium for smart protective clothing and robotics.


Assuntos
Percepção do Tato , Dispositivos Eletrônicos Vestíveis , Inteligência Artificial , Fontes de Energia Elétrica , Retroalimentação Sensorial
13.
Biol. Res ; 56: 26-26, 2023. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1513738

RESUMO

Previous studies have shown that peripheral nerve injury can lead to abnormal dendritic spine remodeling in spinal dorsal horn neurons. Inhibition of abnormal dendritic spine remodeling can relieve neuropathic pain. Electroacupuncture (EA) has a beneficial effect on the treatment of neuropathic pain, but the specific mechanism remains unclear. Evidence has shown that slit-robo GTPase activating protein 3 (srGAP3) and Rho GTPase (Rac1) play very important roles in dendritic spine remodeling. Here, we used srGAP3 siRNA and Rac1 activator CN04 to confirm the relationship between SrGAP3 and Rac1 and their roles in improving neuropathic pain with EA. Spinal nerve ligation (SNL) was used as the experimental model, and thermal withdrawal latency (TWL), mechanical withdrawal threshold (MWT), Western blotting, immunohistochemistry and Golgi-Cox staining were used to examine changes in behavioral performance, protein expression and dendritic spines. More dendritic spines and higher expression levels of srGAP3 were found in the initial phase of neuropathic pain. During the maintenance phase, dendritic spines were more mature, which was consistent with lower expression levels of srGAP3 and higher expression levels of Rac1-GTP. EA during the maintenance phase reduced the density and maturity of dendritic spines of rats with SNL, increased the levels of srGAP3 and reduced the levels of Rac1-GTP, while srGAP3 siRNA and CN04 reversed the therapeutic effects of EA. These results suggest that dendritic spines have different manifestations in different stages of neuropathic pain and that EA may inhibit the abnormal dendritic spine remodeling by regulating the srGAP3/Rac1 signaling pathway to alleviate neuropathic pain.


Assuntos
Animais , Ratos , Eletroacupuntura , Neuralgia/metabolismo , Neuralgia/terapia , Nervos Espinhais/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/metabolismo , Espinhas Dendríticas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo
14.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080662

RESUMO

To overcome the biological barriers formed by the lignin-carbohydrate complex for releasing fermentable sugars from cellulose by enzymolysis is both imperative and challenging. In this study, a strategy of intergranular swelling of cellulose combined with hydrolysis and oxidation was demonstrated. Pretreatment of the bagasse was evaluated by one bath treatment with phosphoric acid and hydrogen peroxide. The chemical composition, specific surface area (SSA), and pore size of bagasse before and after pretreatment were investigated, while the experiments on the adsorption equilibrium of cellulose to cellulase and reagent reuse were also performed. Scanning electron microscopy (SEM) and high-performance liquid chromatography (HPLC) were employed for microscopic morphology observations and glucose analysis, respectively. The results showed that pretreated bagasse was deconstructed into cellulose with a nanofibril network, most of the hemicellulose (~100%) and lignin (~98%) were removed, and the SSA and void were enlarged 11- and 5-fold, respectively. This simple, mild preprocessing method enhanced cellulose accessibility and reduced the biological barrier of the noncellulose component to improve the subsequent enzymolysis with a high glucose recovery (98.60%).

15.
Adv Sci (Weinh) ; 9(30): e2203428, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36026574

RESUMO

Gas-sensitive materials are capable of dynamic identification and content monitoring of specific gases in the environment, and their applications in the field of gas sensing are promising. However, weak adsorption properties are the main challenge limiting the application of gas-sensitive materials. A highly adsorbent gas-sensitive cellulose nanofibril (CNF)-based triboelectric material with a layered structure is prepared here and it is applied to self-powered gas sensing. The layered structure of the triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane cellulose nanofiber (PFOTES-CNF)-based gas-sensitive material further enhances the adsorption of the material due to electrostatic adsorption in the electrostatic field induced by triboelectricity. It is found that the ammonia-sensitive material obtained by loading Ti3 C2 Tx in PFOTES-CNF has a fast response/recovery (12/14 s), high sensitivity response (Vair /Vgas  = 2.1), high selectivity response (37.6%), and low detection limit (10 ppm) for 100 ppm of ammonia gas. In addition, the ammonia-sensitive CNF-based triboelectric material can accurately identify NH3 concentration changes in the range of 10-120 ppm and transmit the signal wirelessly to the user interface, facilitating real-time online monitoring of NH3 in the environment. A novel strategy is provided here for designing and preparing high-performance gas-sensitive composites and the analysis of self-powered gas sensing is guided.


Assuntos
Amônia , Nanofibras , Amônia/análise , Gases/análise , Nanofibras/química , Celulose
16.
Small Methods ; 6(9): e2200664, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35802901

RESUMO

Synthetic polymer materials such as paraformaldehyde and polyamides are widely used in the field of energy engineering. However, they pose a challenge to environmental sustainability because they are derived from petrochemicals that are non-renewable and difficult to degrade in the natural environment. The development of high-performance natural alternatives is clearly emerging as a promising mitigation option. Inspired by natural bamboo, this research reports a "three-step" strategy for the large-scale production of triboelectric materials with special nanostructures from natural bamboo. Benefiting from the special hierarchical porous structure of the material, Bamboo/polyaniline triboelectric materials can reach short-circuit current of 2.9 µA and output power of 1.1 W m-2 at a working area of only 1 cm2 , which exceeds most wood fiber-based triboelectric materials. More importantly, it maintains 85% energy harvesting after an extreme environment of high temperature (200 °C), low temperature (-196 °C), combustion environment, and multiple thermal shocks (ΔT = 396 °C). This is unmatched by current synthetic polymer materials. This work provides new research ideas for the construction and application of biomass structural materials under extreme environmental conditions.


Assuntos
Nanoestruturas , Nylons , Polímeros/química , Porosidade
17.
Cell Death Dis ; 13(5): 453, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551177

RESUMO

A disintegrin and metalloprotease-10(ADAM10) promotes the metastasis of prostate cancer (PCa), but the specific mechanism is indistinct. Herein, DU145 cell lines with stable overexpression and knockdown of ADAM10 were constructed. We found that ectopic expression of ADAM10 not only significantly facilitated cell proliferation, migration, invasion, and inhibited apoptosis, but also could specifically hydrolyze ephrin-A5 and release the ephrin-A5 soluble ectodomain into extracellular media in vitro. These effects were reversed by ADAM10 depletion or treatment of GI254023X. Meanwhile, the co-location and physical interaction among EphA3, ephrin-A5, and ADAM10 were observed in PCa cells using immunofluorescence and immunoprecipitation techniques. Interestingly, overexpression of EphA3 exerted opposite effects in DU145 (ephrin-A5 + ) cells and PC-3 (ephrin-A5 ± ) cells. In addition, the pro-tumor function of EphA3 was reversed by the treatment with the exogenous ephrin-A5-Fc, which increased the phosphorylation level of EphA3 in PC-3 (ephrin-A5 ± ) cells. In nude mice, ADAM10 accelerated growth of the primary tumor, decreased the level of ephrin-A5 in the tumor tissue, but increased the level of ephrin-A5 in the peripheral blood, accompanied with an increase in the expression of CD31 and VEGF (vascular endothelial growth factor) in the tissue. What is more, the serum ephrin-A5 content of patients with metastatic PCa was significantly higher than that of the non-metastatic group (P < 0.05). The receiver operating characteristic curve(ROC) showed that the area under the curve(AUC) of serum ephrin-A5 as a marker of PCa metastasis was 0.843, with a sensitivity of 93.5% and a specificity of 75%. It is concluded that ADAM10-mediated ephrin-A5 shedding promotes PCa metastasis via transforming the role of EphA3 from ligand-dependent tumor suppressor to ligand-independent promoter, and ephrin-A5 in the blood can be used as a new biomarker for PCa metastasis.


Assuntos
Efrina-A5 , Neoplasias da Próstata , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Efrina-A5/metabolismo , Humanos , Ligantes , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Neoplasias da Próstata/genética , Fator A de Crescimento do Endotélio Vascular
18.
Small ; 18(25): e2200577, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35587612

RESUMO

Non-contact mode triboelectric nanogenerators effectively avoid physical contact between two triboelectric materials and achieve long-term reliable operation, providing broad application prospects in the field of self-powered sensing. However, the low surface charge density of triboelectric materials restricts application of contactless sensing. Herein, by controlling Rayleigh Instability deformation of the spinning jet and vapor-induced phase separation during electrostatic spinning, a polyvinylidene fluoride@Mxene (Ti3 C2 Tx ) composite film with spheres multiple physical network structures is prepared and utilized as the triboelectric material of a self-powered contactless sensor. The structure of the composite film and high conductivity of Ti3 C2 Tx provide triboelectric materials with high output performance (charge output and power output up to 128 µC m-2 and 200 µW cm-2 at 2 Hz) and high output stability. The self-powered contactless sensor shows excellent speed sensitivity (1.175 Vs m-1 ). Additionally, it could accurately identify the motion states such as running (55 mV), jumping (105 mV), and walking (40 mV) within the range of 70 cm, and present the signals in different pop forms. This work lays a solid foundation for the development and application of high-performance triboelectric materials, and has guiding significance for the research of self-powered contactless sensing.

19.
ACS Nano ; 15(6): 10577-10586, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34013716

RESUMO

Using clean and sustainable stochastic energy from the environment to eliminate pollution caused by gaseous aldehydes would be an effective strategy to achieve the sustainable development of energy and preserve the environment. Here, a piston-based triboelectric nanogenerator (P-TENG) was used to enhance gaseous acetaldehyde absorption and photocatalytic degradation. An external electric field could be generated on a conductive substrate by the P-TENG, converting wind energy into electricity. This made it possible to efficiently degrade gaseous acetaldehyde in the photocatalytic system. Driven by a light breeze (3.0 m/s), the acetaldehyde removal rate of the system reached 63% within 30 min. The presence of an external electric field could generate more hydroxyl radicals (•OH), superoxide radicals (•O2-), and holes (h+), which has a positive effect on the photocatalytic degradation of acetaldehyde. The design and concept of this study not only realized the efficient conversion of renewable and sustainable random energy but also could be applied to the efficient removal of gaseous aldehydes, providing an effective way to create a cleaner environment.

20.
ACS Appl Mater Interfaces ; 13(20): 24032-24041, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978395

RESUMO

High-air humidity, especially condensation into droplets under the influence of temperature, can pose a serious threat to air purification filters. This report introduces the use of methyltrimethoxysilane (MTMS) for the silanization hydrophobic modification of cellulose nanofibers (CNFs) and obtains an air filter with super-hydrophobicity (CA = 152.4°) and high-efficiency filtration of particulate matter (PM) through the freeze-drying technology. The antihumidity performance of CNFs filters that undergo hydrophobic modification in high-humidity air is improved. Especially in the case of high-humidity air forming condensed water droplets, the increase in the rate of filtration resistance of the hydrophobically modified CNFs filter is much lower than that of the unmodified filter. In addition, the water-vapor-transmission rate of the hydrophobically modified filter is improved. More importantly, adding MTMS can regulate the porous structure of CNFs filters and improve the filtration performance. The specific surface area and the porosity of the filter are 26.54 m2/g and 99.21%, respectively, and the filtering effects of PM1.0 and PM2.5 reach 99.31 and 99.75%, respectively, while a low-filtration resistance (42 Pa) and a quality factor of up to 0.122 Pa-1 are achieved. This work has improved the application potential of high-performance air-purification devices to remove particulate pollution and may provide useful insights to design next-generation air filters suitable for application in high-air humidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...