Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 291-299, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31663169

RESUMO

Moringa oleifera has been considered as a potential functional feed or food, since it contains multiple components beneficial to animal and human. However, little is known about the effects of Moringa oleifera supplementation on productive performances in sows. In the current study, the results showed that dietary Moringa oleifera significantly decreased the farrowing length and the number of stillborn (p < .05), while had an increasing trend in the number of live-born (0.05 < p < .10). Furthermore, 8% Moringa oleifera supplementation significantly elevated protein levels in the colostrum (p < .05); 4% Moringa oleifera lowed serum urea nitrogen of sows after 90 days of gestation (p < .05) and significantly decreased serum glucose on 10 days of lactation (p < .05). Both groups showed significant elevation in serum T-AOC activity (p < .05). The serum malondialdehyde (MDA) of sows declined significantly in 4% Moringa oleifera addition group (p < .05). 8% Moringa oleifera meal significantly elevated serum CAT activity after 60 days of gestation (p < .05), while decreased the serum MDA level and increased the serum GSH-Px activity of sows at 10 days of lactation (p < .05). Of piglets, both two dosages of Moringa oleifera supplementation essentially reduced the serum urea nitrogen (p < .05), and 4% Moringa oleifera meal increased serum total protein (p < .05). In addition, piglets that received 8% Moringa oleifera had the highest serum CAT and SOD activities among all groups (p < .05). The present study indicated that Moringa oleifera supplementation could enhance the reproduction performances, elevate protein levels in the colostrum and improve the serum antioxidant indices in both sows and piglets.


Assuntos
Ração Animal/análise , Dieta/veterinária , Moringa oleifera/química , Suínos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Colostro/química , Suplementos Nutricionais , Feminino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Suínos/sangue
2.
Yi Chuan ; 41(8): 736-745, 2019 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-31447424

RESUMO

As one of plant cell wall components, pectin is the main anti-nutritional factor in livestock and poultry feeds and has an adverse effect on utilization efficiency of feed energy and nitrogen. Pectinases, which are widely found in microorganisms such as bacteria, yeast and filamentous fungi in nature,can improve feed efficiency by relieving the anti-nutritional effect of pectin through promoting the hydrolysis reaction of feed pectin. To explore the feasibility of expressing microbial-derived pectinase genes in pig cells, we introduced microbial-derived pectinase genes pg5a, pgI, pga3A, and pgaA into porcine PK 15 cells by lipofection for heterogenous expression. Enzymatic activities of the pectinases encoded by these genes were analyzed using the 3,5 dinitrosalicylic acid (DNS) method. Results showed that all four pectinase genes were able to be transcribed into mRNAs in porcine PK 15 cells, but only pg5a and pgI were adapted to the porcine cell expression system. Among them, the maximum activity of pectinase PG5A was 0.95 U/mL, the optimum pH was pH 4.0, and the enzymatic activity was maintained above 46% in the range of pH 4.6 to 6.0. Pectinase PGI obtained the highest enzymatic activity at pH 5.0, which was 0.30 U/mL, and maintained more than 35% of the activity in the range of pH 4.0 to 6.0. The results of digestive protease tolerance test showed that PG5A and PGI were highly resistant to pepsin and trypsin. After treatment with 1 mg/mL pig pepsin for two hours, the residual enzymatic activities of PG5A and PGI were 76% and 71%, respectively. And after two hours treatment with 1 mg/mL of pig trypsin, the remaining enzymatic activities of PG5A and PGI were 44% and 93%, respectively. In summary, pectinase PG5A and PGI can be effectively expressed in pig cells, and have strong tolerance to pig intestinal pH environment and digestive proteases. Therefore, both pg5a and pgI can be used as candidate genes for production of transgenic pigs.


Assuntos
Bactérias/enzimologia , Fungos/enzimologia , Poligalacturonase/biossíntese , Animais , Células Cultivadas , Pectinas , Poligalacturonase/genética , Suínos
3.
Yi Chuan ; 41(4): 285-292, 2019 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-30992250

RESUMO

Histone methylation is a modification which occurs in the N-terminal peptide chains of the histone nucleosome. The 4th, 9th, 27th, 36th and 79th lysines in N-terminal peptide chain of histone H3 are hot spots for this modification, including mono-, di-, and tri-methylation. H3K27me3 is the tri-methylation modification on histone H3 lysine 27, which mainly functions as a transcriptional repressor regulating skeletal muscle development. Studies have shown that H3K27me3 can finely regulate skeletal muscle proliferation, including the level and duration of skeletal muscle development by specifically binding to myogenic regulatory factors (e.g., MyoD, MyoG, etc.), cell cycling regulators, and epigenetic regulators including lncRNA and miRNA. In this review, we introduce the types and mechanisms of histone methylation and de-methylation of H3K27. We also summarize how H3K27me3 functions in the proliferation and differentiation of skeletal muscle cell. This review will contribute to the comprehension of the function of H3K27me3 in regulating skeletal muscle development and provide reference for further improving our understanding of mammalian muscle.


Assuntos
Histonas/fisiologia , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Animais , Proliferação de Células , Lisina/química , Mamíferos , Metilação , Células Musculares/citologia , Nucleossomos/química
4.
Yi Chuan ; 41(4): 327-336, 2019 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-30992254

RESUMO

There are two major pathways, homology-directed repair (HDR) and nonhomologous end joining (NHEJ), involved in double-strand break (DSB) repair. Single-stranded oligodeoxyribonucleotide (ssODN)-mediated homologous recombination repair is commonly used for animal site-directed genome editing, with great scientific and practical value. To improve ssODN-mediated HDR efficiency in the pig genome, we investigated the effect and molecular mechanism of mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor PD0325901 on the HDR efficiency in porcine fetal fibroblasts (PFFs). The results showed that PD0325901 obviously increased the percentage of G2 and S phase cell populations and reduced the cell population ratio in the G1 phase of PFFs, and promoted the expression of HDR repair factor. At the optimal concentration of 250 nmol/L, PD0325901 increased the repair efficiency of ssODN-mediated GFP reporter vector by 58.8% and the directed editing efficiency of PFF DMD and ROSA26 locus by 48.16% and 17.64%, respectively. The results show that MEK inhibitor PD0325901 significantly promotes the efficiency of ssODN-mediated homologous-directed repair in the porcine genome, thus offering a new idea to generate genetically modified pigs more effectively.


Assuntos
Benzamidas/farmacologia , Difenilamina/análogos & derivados , Edição de Genes , Reparo de DNA por Recombinação , Animais , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples , Difenilamina/farmacologia , Fibroblastos , MAP Quinase Quinase Quinase 1/antagonistas & inibidores , Oligodesoxirribonucleotídeos , Suínos
5.
Transgenic Res ; 28(2): 237-246, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30697646

RESUMO

Producing heterologous enzymes in the animal digestive tract to improve feed utilization rate is a new research strategy by transgenic technology. In this study, transgenic pigs specifically expressing ß-glucanase gene in the intestine were successfully produced by somatic cell nuclear transfer technology in order to improve digestibility of dietary ß-glucan and absorption of nutrients. The ß-glucanase activity in the intestinal juice of 4 transgenic pigs was found to be 8.59 ± 2.49 U/mL. The feeding trial results showed that the crude protein digestion of 4 transgenic pigs was significantly increased compared with that of the non-transgenic pigs. In order to investigate the inheritance of the transgene, 7 G1 transgenic pigs were successfully obtained. The ß-glucanase activity in the intestinal juice of 7 G1 transgenic pigs was found to be 2.35 ± 0.72 U/mL. The feeding trial results showed the crude protein digestion and crude fat digestion were significantly higher in 7 G1 transgenic pigs than in non-transgenic pigs. Taken together, our study demonstrated that the foreign ß-glucanase expressing in the intestine of the transgenic pigs could reduce the anti-nutritional effect of ß-glucans in feed. In addition, ß-glucanase gene could be inherited to the offsprings and maintain its physiological function. It is a promising approach to improve feed utilization by producing transgenic animals.


Assuntos
Ração Animal/análise , Animais Geneticamente Modificados/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Intestinos/enzimologia , Paenibacillus polymyxa/enzimologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Glicosídeo Hidrolases/genética , Suínos
6.
Yi Chuan ; 40(9): 749-757, 2018 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-30369478

RESUMO

Non-homologous end-joining (NHEJ) is the predominant DNA double-strand break (DSB) repair pathway in mammalian cells. It inhibits the efficiency of homologous recombination (HR) by competing for DSB targets. To improve the efficiency of HR in porcine fetal fibroblasts (PFFs), several RNA interference (RNAi) systems were designed to knockdown NHEJ key molecules, such as polynucleotide kinase/phosphatase (PNKP), DNA ligase IV (LIG4) and NHEJ1. The results show that siRNA significantly knocked down LIG4, PNKP and NHEJ1 expression. Suppression of PNKP dramatically increased the efficiency of single-strand annealing (SSA), double-strand DNA (dsDNA) and single-strand DNA (ssODN) mediated homology-directed repair (HDR) by 55.7%, 37.4% and 73.1% after transfected with the SSA-GFP reporter, HDR-GFP system or ssODN-GFP system, respectively; whereas knockdown of LIG4 and NHEJ1 repair factors significantly increased dsDNA or ssODN-mediated HDR efficiency by 37.5% and 76.9%, respectively.


Assuntos
Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Interferência de RNA , Suínos/genética , Animais , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Feminino , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Reparo de DNA por Recombinação , Suínos/embriologia , Suínos/metabolismo
7.
Yi Chuan ; 38(12): 1081-1089, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28034840

RESUMO

Somatic cell nuclear transfer technique has great applications in livestock breeding, production of genetically modified animals, rescue of endangered species and treatment of human diseases. However, the currently low efficiency in animals cloning, an average of less than 5%, greatly hindered the rapid development of this technique. Among many factors which affect the efficiency of cloning pigs, X chromosome inactivation is an important one. Moreover, Xist gene is closely related to X chromosome inactivation, suggesting that it may directly or indirectly affects cloning efficiency. In this study, multiple sgRNAs were designed based on the CRISPR/Cas system, and two sites (Target 3 and Target 4) whose mutation efficiency were 1% and 3% at the cellular level were selected. We successfully knocked out Xist with 100% efficiency by microinjecting sgRNAs for Target 3 and Target 4 in embryo. Finally, 6 cloning piglets were born including two Xist-fully-knockout piglets. The follow-up studies on increasing cloning efficiency can be carried out based on the Xist-knockout model.


Assuntos
RNA Longo não Codificante/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Técnicas de Inativação de Genes , RNA Guia de Cinetoplastídeos/genética , RNA Longo não Codificante/genética , Suínos
8.
Yi Chuan ; 38(5): 402-10, 2016 05.
Artigo em Chinês | MEDLINE | ID: mdl-27232488

RESUMO

The cloning technique, also called somatic cell nuclear transfer (SCNT), has been successfully established and gradually applied to various mammalian species. However, the developmental rate of SCNT mammalian embryos is very low, usually at 1% to 5%, which limits the application of SCNT. Placental developmental defects are considered as the main cause of SCNT embryo development inhibition. Almost all of SCNT-derived mammalian placentas exhibit various abnormalities, such as placental hyperplasia, vascular defects and umbilical cord malformation. Mechanistically, these abnormalities result from failure of establishment of correct epigenetic modification in the trophectoderm genome, which leads to erroneous expression of important genes for placenta development-related, particularly imprinted genes. Consequently, aberrant imprinted gene expression gives rise to placental morphologic abnormalities and functional defects, therefore decreases developmental competence of cloned embryos. Currently, although numerous methods that can improve the developmental ability of SCNT-derived embryos have been reported, most of them are unable to substantially enhance the success rate of SCNT due to failure to eliminate the placental development defects. In this review, we summarize placental abnormalities and imprinted gene expression in mammalian cloning, and propose directions for the future research aiming to improve the cloning efficiency.


Assuntos
Técnicas de Transferência Nuclear , Placenta/anormalidades , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Impressão Genômica , Placenta/irrigação sanguínea , Gravidez , Cordão Umbilical/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...