Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenetics ; 19(1): 2341578, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38615330

RESUMO

Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of skeletal muscle development through multiple mechanisms. The present study revealed that the lncRNA SOX6 AU (SRY-box transcription factor 6 antisense upstream) is reverse transcribed from upstream of the bovine sex-determining region Y (SRY)-related high-mobility-group box 6 (SOX6) gene. SOX6 AU was significantly differentially expressed in muscle tissue among different developmental stages in Xianan cattle. Subsequently, knockdown and overexpression experiments discovered that SOX6 AU promoted primary skeletal muscle cells proliferation, apoptosis, and differentiation in bovine. The overexpression of SOX6 AU in bovine primary skeletal muscle cells resulted in 483 differentially expressed genes (DEGs), including 224 upregulated DEGs and 259 downregulated DEGs. GO functional annotation analysis showed that muscle development-related biological processes such as muscle structure development and muscle cell proliferation were significantly enriched. KEGG pathway analysis revealed that the PI3K/AKT and MAPK signaling pathways were important pathways for DEG enrichment. Notably, we found that SOX6 AU inhibited the mRNA and protein expression levels of the SOX6 gene. Moreover, knockdown of the SOX6 gene promoted the proliferation and apoptosis of bovine primary skeletal muscle cells. Finally, we showed that SOX6 AU promoted the proliferation and apoptosis of bovine primary skeletal muscle cells by cis-modulation of SOX6 in cattle. This work illustrates our discovery of the molecular mechanisms underlying the regulation of SOX6 AU in the development of beef.


Assuntos
Fosfatidilinositol 3-Quinases , RNA Longo não Codificante , Bovinos , Animais , Fosfatidilinositol 3-Quinases/genética , Metilação de DNA , Desenvolvimento Muscular/genética , Apoptose , Diferenciação Celular
2.
Int J Mol Sci ; 17(2)2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26840300

RESUMO

MicroRNAs (miRNAs), a class of single stranded, small (~22 nucleotides), non-coding RNAs, play an important role in muscle development. We focused on the role of the miR-30-5p family during bovine muscle development from previous high-throughput sequencing results and analyzed their expression profiles. MHC and MyoG mRNAs expression as well as their proteins were suppressed in differentiated C2C12 cells, suggesting the importance of miR-30-5p in muscle development. MBNL, the candidate target of miR-30-5p, is an alternative splicing regulation factor. MBNL1 and MBNL3 have opposite effects on muscle differentiation. Our results confirmed that miR-30a-5p and miR-30e-5p repress the expression of MBNL1, MBNL2 and MBNL3, whereas miR-30b-5p inhibits MBNL1 and MBNL2 expression. This provides direct evidence that MBNL expression can be flexibly regulated by miR-30-5p. Previous studies showed that MBNL1 promotes exon inclusion of two muscle-related genes (Trim55 and INSR). Through RNA splicing studies, we found that miR-30-5p had an effect on their alternative splicing, which means miR-30-5p via MBNL1 could be integrated into muscle signaling pathways in which INSR or Trim55 are located. In conclusion, miR-30-5p could inhibit muscle cell differentiation and regulate the alternative splicing of Trim55 and INSR by targeting MBNL. These results promote the understanding of the function of miRNAs in muscle development.


Assuntos
Processamento Alternativo , MicroRNAs/genética , Desenvolvimento Muscular , Proteínas Musculares/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Bovinos , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Proteínas Musculares/metabolismo , Proteínas de Ligação a RNA/genética
3.
Gene ; 575(2 Pt 1): 191-8, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26318478

RESUMO

Patatin-like phospholipase domain-containing protein 3 (PNPLA3), a member of the patatin like phospholipase domain-containing (PNPLA) family, plays an important role in energy balance, fat metabolism regulation, glucose metabolism and fatty liver disease. Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) is a new method offering fast detection and extreme simplicity at a negligible cost for SNP genotyping. In this paper, we investigated the genetic variations at different ages of 660 Chinese indigenous cattle belonging to three breeds (QC, NY, JX) and applied T-ARMS-PCR and PCR-RFLP methods to genotype four SNPs, SNP1: g.A2980G, SNP2: g.A2996T, SNP3: g.A36718G, SNP4: g.G36850A. The statistical analyses indicated that these 4 SNPs affected growth traits markedly (P<0.05) in QC population, whereas combined haplotypes were not (P>0.05). The qPCR (quantitative PCR) indicated that bovine PNPLA3 gene was exclusively expressed in fat tissues. Besides, the analysis between SNP and mRNA expression revealed that, in SNP1, the expression of AG was much higher than AA and GG (P<0.05), which was in accordance with the results of growth traits association analysis, while the results of SNP4 was not. These results supported high potential that SNPs of bovine PNPLA3 gene might be utilized as genetic markers in marker-assisted selection (MAS) for Chinese cattle breeding programs.


Assuntos
Primers do DNA/química , Regulação Enzimológica da Expressão Gênica/fisiologia , Lipase/biossíntese , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Primers do DNA/genética , Marcadores Genéticos , Lipase/genética , Seleção Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...