Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Drug Metab Dispos ; 52(5): 377-389, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38438166

RESUMO

The determination of metabolic stability is critical for drug discovery programs, allowing for the optimization of chemical entities and compound prioritization. As such, it is common to perform high-volume in vitro metabolic stability experiments early in the lead optimization process to understand metabolic liabilities. Additional metabolite identification experiments are subsequently performed for a more comprehensive understanding of the metabolic clearance routes to aid medicinal chemists in the structural design of compounds. Collectively, these experiments require extensive sample preparation and a substantial amount of time and resources. To overcome the challenges, a high-throughput integrated assay for simultaneous hepatocyte metabolic stability assessment and metabolite profiling was developed. This assay platform consists of four parts: 1) an automated liquid-handling system for sample preparation and incubation, 2) a liquid chromatography and high-resolution mass spectrometry-based system to simultaneously monitor the parent compound depletion and metabolite formation, 3) an automated data analysis and report system for hepatic clearance assessment; and 4) streamlined autobatch processing for software-based metabolite profiling. The assay platform was evaluated using eight control compounds with various metabolic rates and biotransformation routes in hepatocytes across three species. Multiple sample preparation and data analysis steps were evaluated and validated for accuracy, repeatability, and metabolite coverage. The combined utility of an automated liquid-handling instrument, a high-resolution mass spectrometer, and multiple streamlined data processing software improves the process of these highly demanding screening assays and allows for simultaneous determination of metabolic stability and metabolite profiles for more efficient lead optimization during early drug discovery. SIGNIFICANCE STATEMENT: Metabolic stability assessment and metabolite profiling are pivotal in drug discovery to fully comprehend metabolic liabilities for chemical entity optimization and lead selection. Process of these assays can be repetitive and resource demanding. Here, we developed an integrated hepatocyte stability assay that combines automation, high-resolution mass spectrometers, and batch-processing software to improve and combine the workflow of these assays. The integrated approach allows simultaneous metabolic stability assessment and metabolite profiling, significantly accelerating screening and lead optimization in a resource-effective manner.


Assuntos
Hepatócitos , Software , Cromatografia Líquida/métodos , Espectrometria de Massas , Automação
2.
Cancer Lett ; 587: 216709, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350547

RESUMO

Patients diagnosed with lymph node (LN) metastatic liver cancer face an exceedingly grim prognosis. In-depth analysis of LN metastatic patients' characteristics and tumor cells' interactions with human lymphatic endothelial cells (HLECs), can provide important biological and therapeutic insights. Here we identify at the single-cell level that S100A6 expression differs between primary tumor and their LN metastasis. Of particular significance, we uncovered the disparity in S100A6 expression between tumors and normal tissues is greater in intrahepatic cholangiocarcinoma (ICC) patients, frequently accompanied by LN metastases, than that in hepatocellular carcinoma (HCC), with rare occurrence of LN metastasis. Furthermore, in the infrequent instances of LN metastasis in HCC, heightened S100A6 expression was observed, suggesting a critical role of S100A6 in the process of LN metastasis. Subsequent experiments further uncovered that S100A6 secreted from tumor cells promotes lymphangiogenesis by upregulating the expression and secretion of vascular endothelial growth factor-D (VEGF-D) in HLECs through the RAGE/NF-kB/VEGF-D pathway while overexpression of S100A6 in tumor cells also augmented their migration and invasion. Taken together, these data reveal the dual effects of S100A6 in promoting LN metastasis in liver cancer, thus highlighting its potential as a promising therapeutic target.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Fator D de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/farmacologia , Metástase Linfática , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , NF-kappa B/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/farmacologia , Proteínas de Ciclo Celular/metabolismo
3.
Food Sci Biotechnol ; 33(4): 981-990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371677

RESUMO

Consuming pomegranate juice (PJ) is beneficial for hypertensive regulation because of the phenolic compounds in PJ and their inhibitory activity on angiotensin-I-converting enzyme (ACE). To better utilize bioactive function of food, microorganism fermentation has been adopted to alter phenolic metabolism. This study confirms that even under in vitro digestion, fermented PJ (FPJ) maintains higher ACE inhibitory activity than that of PJ. The main phenolic compounds in PJ were compared either under fermentation or in vitro digestion. This study finds that fermentation promotes antioxidant capacity of PJ. The chemical properties of FPJ are evaluated and the corresponding relationship with bioactivities is analyzed. A sensory evaluation comparison is conducted between FPJ and PJ, furnishing interesting information for consumers. This study highlights the relationship between ACE inhibitory activity of PJ and phenolic composition under fermentation and in vitro digestion, providing novel insights for diet regulation of phenolic-rich FPJ in ACE inhibition therapy. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01388-w.

4.
Food Chem ; 442: 138326, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219563

RESUMO

The residual dextran impurities in the upstream process significantly impact the crystallization of starch-based functional sugar and the related food properties. This study intends to reveal the mechanism of dextran's influence on trehalose crystallization, and build a relationship among the dextran in syrup and the physicochemical and functional properties of trehalose. Instead of incorporating into the crystal lattice, dextran changes the assembly rate of trehalose molecules on crystal surface. The different sensitivity and adsorption capacity of the crystal surface to the chain length of dextran determines the growth rate of crystal surfaces, resulting in different crystal morphology. The bulk trehalose crystals, which were obtained from syrups with short chain dextran, have excellent powder properties, including best flowability (35◦), highest crystal strength (2.7 N), lowest caking rate (62.22 %), and the most uniform mixing with other sweeteners (sucrose/xylitol) in food formulations, achieving more stable starch preservation.


Assuntos
Dextranos , Trealose , Cristalização , Trealose/química , Dextranos/química , Amido , Conservação de Alimentos
5.
Hepatol Int ; 18(1): 91-107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37349627

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver malignancy. Although its incidence is lower than that of hepatocellular carcinoma (HCC), ICC has a worse prognosis, and it is more prone to recur and metastasize, resulting in a far greater level of malignancy. METHODS: Bioinformatics analysis and qRT-PCR were applied to assess the level of miR-122-5p and IGFBP4. Western blot, transwell assays, wound-healing assays, real-time cellular invasion monitoring, in vivo study were applied to explore the function of miR-122-5p and IGFBP4. Dual luciferase reporter assays and chromatin isolation by RNA purification (ChiRP) were applied to explore the regulation of IGFBP4 by miR-122-5p. RESULTS: Using The Cancer Genome Atlas (TCGA) data set, Sir Run Run Shaw hospital data set and bioinformatics analyses, we identified miR-122-5p as a potential tumor suppressor in ICC and validated its suppressive effect in metastasis and invasion of ICC. Transcriptome sequencing, rescue and complement experiments were used to identify insulin-like growth factor binding protein 4 (IGFBP4) as a target of miR-122-5p. The mechanism by which miR-122-5p regulates IGFBP4 was clarified by chromatin separation RNA purification technology, and dual-luciferase reporter assays. We discovered a rare novel mechanism by which miR-122-5p promotes IGFBP4 mRNA transcription by binding to its promoter region. Furthermore, in mouse orthotopic metastasis model, miR-122-5p inhibited the invasion of ICC. CONCLUSION: In summary, our study revealed a novel mechanism of miR-122-5p and function of the miR-122-5p/IGFBP4 axis in the metastasis of ICC. We also highlighted the clinical value of miR-122-5p and IGFBP4 in inhibiting ICC invasion and metastasis.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Recidiva Local de Neoplasia , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Cromatina , Luciferases/genética , Luciferases/metabolismo , Regulação Neoplásica da Expressão Gênica
6.
J Contemp Dent Pract ; 24(10): 729-732, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38152903

RESUMO

AIM: To evaluate how an institution's values can impact students' intent to practice in underserved areas. MATERIALS AND METHODS: The values of 71 accredited dental schools in the United States were searched and tabulated. The American Dental Education Association (ADEA) survey results were used to tabulate the desire to serve the underserved population before entering dental school and upon graduation. Additionally, responses on the total amount of educational debt on graduation was compiled for LLUSD and all other dental schools. Fisher's exact test was performed to compare the difference between the two cohorts and Wilcoxon test was used to assess difference within the groups. Tests were conducted at an alpha level of 0.05 with SAS v 9.1.3 (SAS Institute, Cary, NC, USA). RESULTS: The top five values of US dental institutions based on frequency were excellence, diversity/inclusion, integrity, innovation, and respect. There was no statistically significant difference between LLUSD and all other dental schools in their desire to serve the underserved community upon graduation (p > 0.05, in all instances). Overall, there was a trend that upon graduation, the desire to serve the underserved had less impact on students' decision-making on their career choices. This drop in the desire to serve the underserved was statistically significant within both cohorts in the year 2021 (p < 0.001). CONCLUSIONS: Dental institutions should focus on better understanding of how their values impact their students' career choices so that they can develop strategies to better align their values with the mission of addressing the dentist shortage in underserved areas. CLINICAL SIGNIFICANCE: Dental institutions' values play a major role in impacting students' career choices upon graduation and should be assessed using metrics that are measurable.


Assuntos
Estudantes de Odontologia , Estudantes de Medicina , Humanos , Estados Unidos , Estudos Transversais , Inquéritos e Questionários , Intenção
7.
Int J Biol Sci ; 19(14): 4608-4626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781045

RESUMO

Sorafenib is a first-line chemotherapy drug for treating advanced hepatocellular carcinoma (HCC). However, its therapeutic effect has been seriously affected by the emergence of sorafenib resistance in HCC patients. The underlying mechanism of sorafenib resistance is unclear. Here, we report a circular RNA, cDCBLD2, which plays an important role in sorafenib resistance in HCC. We found that cDCBLD2 was upregulated in sorafenib-resistant (SR) HCC cells, and knocking down cDCBLD2 expression could significantly increase sorafenib-related cytotoxicity. Further evidence showed that cDCBLD2 can bind to microRNA (miR)-345-5p through a competing endogenous RNA mechanism, increase type IIA topoisomerase (TOP2A) mRNA stability through a miRNA sponge mechanism, and reduce the effects of sorafenib treatment on HCC by inhibiting apoptosis. Our findings also suggest that miR-345-5p can negatively regulate TOP2A levels by binding to the coding sequence region of its mRNA. Additionally, targeting cDCBLD2 by injecting a specific small interfering RNA (siRNA) could significantly overcome sorafenib resistance in a patient-derived xenograft (PDX) mouse model of HCC. Taken together, our study provides a proof-of-concept for a potential strategy to overcome sorafenib resistance in HCC patients by targeting cDCBLD2 or TOP2A.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , RNA Circular/genética
8.
Heliyon ; 9(9): e19443, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809857

RESUMO

[This corrects the article DOI: 10.1016/j.heliyon.2023.e17100.].

9.
ACS Appl Mater Interfaces ; 15(43): 50499-50507, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862618

RESUMO

Phase-change memory (PCM) is considered one of the most promising candidates for universal memory. However, during the manufacturing process of PCM, phase-change materials (PCMs) encounter severe oxidation, which can cause degraded performance and reduced stability of PCM, hindering its industrialization process. In this work, a multilayered oxygen barrier (MOB) structure is proposed to tackle this challenge. Material characterization shows that the MOB structure can significantly reduce the extent of oxidation of PCMs from around 70% to as low as around 10%, achieving a remarkably low level of oxidation. Moreover, the material in the MOB structure exhibits notable enhancements in crystallization temperature and cycling capability. The improved stability is attributed to the oxygen barrier effect and the suppression of elemental segregation within the material, which are both conferred by the MOB structure. In summary, this work provides an effective solution to address the oxidation of PCMs, offering valuable guidance for realizing a high-reliability PCM in practical production.

10.
Cancer Gene Ther ; 30(12): 1663-1678, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828105

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a form of liver cancer with poor long-term survival rates that requires novel therapeutic methods. Our team's previous research found that ICC patients prone to cuproptosis possessed a more satisfactory long-term prognosis and a more sensitive response to copper carrier Elesclomol. Thus, we aimed to identify new diagnostic and treatment strategies for ICC patients prone to cuproptosis and further explore the associated intracellular and extracellular mechanisms of ICC cells prone to cuproptosis. We employed FU-ICC (n = 255) as the training dataset, and validated our findings using SRRSH-ICC (from our center, n = 65), GSE26566 (n = 104), E-MTAB-6389 (n = 78), and scRNA-seq (n = 14) datasets. Single sample gene set enrichment analysis and subsequent unsupervised cluster analysis was conducted on the training dataset for the pan-programmed cell death gene set (including apoptosis, autophagy, ferroptosis, pyroptosis, necroptosis, and cuproptosis) to define and screen ICC patients prone to cuproptosis. We constructed a nomogram model using weighted gene co-expression network analysis and machine learning algorithms to predict ICC patients prone to cuproptosis, then explored its clinical value with multi-center transcriptome profiling. Furthermore, we validated the hub genes with in vitro and animal experiments to define ICC cells prone to cuproptosis. Ultimately, bulk and single-cell transcriptome profiling were utilized to explore the immune microenvironment of ICC cells prone to cuproptosis. Our nomogram model could help predict ICC patients prone to cuproptosis and possessed excellent prediction efficiency and clinical significance via internal and external verification. In vitro experiments demonstrated that ICC cells with siRNA-mediated knockdown of CD274 (PD-L1) and stimulation with elescomol-CuCl2 were prone to cuproptosis, and CD274-negative ICC cells could be defined as ICC cells prone to cuproptosis. The safety and feasibility of lenti-sh CD274+Elesclomol-CuCl2 as a therapeutic approach for ICC were verified using bioinformatics analysis and animal experiments. Bulk and single-cell transcriptome profiling indicated that the interactions between ICC cells prone to cuproptosis and monocytes/macrophages were particularly relevant. In conclusion, this study systematically and comprehensively explored cuproptosis in ICC for the first time. We constructed precise diagnostic and treatment strategies for ICC patients prone to cuproptosis and further explored the intracellular and extracellular mechanisms of ICC cells prone to cuproptosis. Further work with large prospective cohorts will help verify these conclusions.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Humanos , Apoptose/genética , Antígeno B7-H1 , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Estudos Prospectivos , Microambiente Tumoral
11.
J Exp Clin Cancer Res ; 42(1): 239, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705041

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with a poor prognosis. The underlying functions and mechanisms of circular RNA and SUMOylation in the development of ICC remain poorly understood. METHODS: Circular RNA hsa_circ_0001681 (termed Circ-RAPGEF5 hereafter) was identified by circular RNA sequencing from 19 pairs of ICC and adjacent tissue samples. The biological function of Circ-RAPGEF5 in tumor proliferation and metastasis was examined by a series of in vitro assays. A preclinical model was used to validate the therapeutic effect of targeting Circ-RAPGEF5. RNA pull-down and dual-luciferase reporter assays were used to access the RNA interactions. Western blot and Co-IP assays were used to detect SUMOylation levels. RESULTS: Circ-RAPGEF5, which is generated from exons 2 to 6 of the host gene RAPGEF5, was upregulated in ICC. In vitro and in vivo assays showed that Circ-RAPGEF5 promoted ICC tumor proliferation and metastasis, and inhibited apoptosis. Additionally, high Circ-RAPGEF5 expression was significantly correlated with a poor prognosis. Further investigation showed that SAE1, a potential target of Circ-RAPGEF5, was also associated with poor oncological outcomes. RNA pull-down and dual-luciferase reporter assays showed an interaction of miR-3185 with Circ-RAPGEF5 and SAE1. Co-IP and western blot assays showed that Circ-RAPGEF5 is capable of regulating SUMOylation. CONCLUSION: Circ-RAPGEF5 promotes ICC tumor progression and SUMOylation by acting as a sponge for miR-3185 to stabilize SAE1. Targeting Circ-RAPGEF5 or SAE1 might be a novel diagnostic and therapeutic strategy in ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , RNA Circular/genética , Sumoilação , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Fatores ras de Troca de Nucleotídeo Guanina , Enzimas Ativadoras de Ubiquitina
12.
Nucl Med Biol ; 124-125: 108386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699300

RESUMO

Tau PET imaging using the tau specific PET tracer [18F]GTP1 has been and is part of therapeutic trials in Alzheimer's disease to monitor the accumulation of tau aggregates in the brain. Herein, we examined the metabolic processes of GTP1 and assessed the influence of smoking on its metabolism through in vitro assays. The tracer metabolic profile was assessed by incubating GTP1 with human liver microsomes (HLM) and human hepatocytes. Since smoking strongly stimulates the CYP1A2 enzyme activity, we incubated GTP1 with recombinant CYP1A2 to evaluate the role of the enzyme in tracer metabolism. It was found that GTP1 could form up to eleven oxidative metabolites with higher polarity than the parent. Only a small amount (2.6 % at 60 min) of a defluorinated metabolite was detected in HLM and human hepatocytes incubations highlighting the stability of GTP1 with respect to enzymatic defluorination. Moreover, the major GTP1 metabolites were not the product of CYP1A2 activity suggesting that smoking may not impact in vivo tracer metabolism and subsequently GTP1 brain kinetics.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos
13.
Heliyon ; 9(7): e17100, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37455974

RESUMO

Background: Over the past 30 years, numerous studies have focused on the treatment of cholangiocarcinoma (CCA), and these treatments have greatly evolved. Objectives: To better understand the research trends, we evaluated the most influential publications and attempted to identify their characteristics using bibliometric methods. Methods: The most influential publications were identified from the Clarivate Analytics Web of Science Core Collection database. The general characteristics of included papers were identified, and the research trends were explored via the bibliometric method. Results: The average total number of citations for of the listed publications were 312 (range from 165 to 1922). The highest number of papers were published during period II (2001-2010, n = 50), followed by period III (2011-2020, n = 28), and period I (1991-2000, n = 22). The United States and Germany have made remarkable achievements in this field. Institutionally, Mayo Clinic and Memorial Sloan-Kettering Cancer Center were the leading institutions, with Blumgart and Zhu from the United States being the most influential authors. Close collaboration was established between the leading countries, institutions, and authors. The Annals of Surgery contributed the most to the papers with the highest total number of citations. Surgery predominated during period I (n = 14, 63.6%), with a gradual decline occurring during periods II (n = 19, 41.3%, P = 0.085) and period III (n = 3, 9.4%, P = 0.002). Contrastingly, the number of publications related to systemic therapy has increased significantly since period II and peaked in period III. Conclusions: Surgery remains the most important treatment for CCA. However systemic therapy has become a research and clinical application hotspot. These findings will contribute to the translation of treatments for CCA and provide researchers with relevant research directions.

14.
J Adv Res ; 52: 171-201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37419381

RESUMO

BACKGROUND: The gut microbiome is a diverse system within the gastrointestinal tract composed of trillions of microorganisms (gut microbiota), along with their genomes. Accumulated evidence has revealed the significance of the gut microbiome in human health and disease. Due to its ability to alter drug/xenobiotic pharmacokinetics and therapeutic outcomes, this once-forgotten "metabolic organ" is receiving increasing attention. In parallel with the growing microbiome-driven studies, traditional analytical techniques and technologies have also evolved, allowing researchers to gain a deeper understanding of the functional and mechanistic effects of gut microbiome. AIM OF REVIEW: From a drug development perspective, microbial drug metabolism is becoming increasingly critical as new modalities (e.g., degradation peptides) with potential microbial metabolism implications emerge. The pharmaceutical industry thus has a pressing need to stay up-to-date with, and continue pursuing, research efforts investigating clinical impact of the gut microbiome on drug actions whilst integrating advances in analytical technology and gut microbiome models. Our review aims to practically address this need by comprehensively introducing the latest innovations in microbial drug metabolism research- including strengths and limitations, to aid in mechanistically dissecting the impact of the gut microbiome on drug metabolism and therapeutic impact, and to develop informed strategies to address microbiome-related drug liability and minimize clinical risk. KEY SCIENTIFIC CONCEPTS OF REVIEW: We present comprehensive mechanisms and co-contributing factors by which the gut microbiome influences drug therapeutic outcomes. We highlight in vitro, in vivo, and in silico models for elucidating the mechanistic role and clinical impact of the gut microbiome on drugs in combination with high-throughput, functionally oriented, and physiologically relevant techniques. Integrating pharmaceutical knowledge and insight, we provide practical suggestions to pharmaceutical scientists for when, why, how, and what is next in microbial studies for improved drug efficacy and safety, and ultimately, support precision medicine formulation for personalized and efficacious therapies.

15.
Nat Commun ; 14(1): 3431, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301874

RESUMO

Effective reprogramming of chronic wound healing remains challenging due to the limited drug delivery efficacy hindered by physiological barriers, as well as the inappropriate dosing timing in distinct healing stages. Herein, a core-shell structured microneedle array patch with programmed functions (PF-MNs) is designed to dynamically modulate the wound immune microenvironment according to the varied healing phases. Specifically, PF-MNs combat multidrug-resistant bacterial biofilm at the early stage via generating reactive oxygen species (ROS) under laser irradiation. Subsequently, the ROS-sensitive MN shell gradually degrades to expose the MN core component, which neutralizes various inflammatory factors and promotes the phase transition from inflammation to proliferation. In addition, the released verteporfin inhibits scar formation by blocking Engrailed-1 (En1) activation in fibroblasts. Our experiments demonstrate that PF-MNs promote scarless wound repair in mouse models of both acute and chronic wounds, and inhibit the formation of hypertrophic scar in rabbit ear models.


Assuntos
Cicatriz Hipertrófica , Cicatrização , Camundongos , Animais , Coelhos , Cicatrização/fisiologia , Pele/patologia , Espécies Reativas de Oxigênio/metabolismo , Cicatriz Hipertrófica/patologia , Fibroblastos/metabolismo
16.
Int J Biol Sci ; 19(7): 2114-2131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151879

RESUMO

Emerging studies have revealed matrix stiffness promotes hepatocellular carcinoma (HCC) development. We studied metabolic dysregulation in HCC using the TCGA-LIHC database (n=374) and GEO datasets (GSE14520). HCC samples were classified into three heterogeneous metabolic pathway subtypes with different metabolic profiles: Cluster 1, an ECM-producing subtype with upregulated glycan metabolism; Cluster 2, a hybrid subtype with partial pathway dysregulation. Cluster 3, a lipogenic subtype with upregulated lipid metabolism; These three subtypes have different prognosis, clinical features and genomic alterations. We identified key enzymes that respond to matrix stiffness and regulate lipid metabolism through bioinformatic analysis. We found long-chain acyl-CoA dehydrogenase (ACADL) is a mechanoreactive enzyme that reprograms HCC cell lipid metabolism in response to extracellular matrix stiffness. ACADL is also regarded as tumor suppressor in HCC. We found that increased extracellular matrix stiffness led to activation of Yes-associated protein (YAP) and the YAP/TEA Domain transcription factor 4 (TEAD4) transcriptional complex was able to directly repress ACADL at the transcriptional level. The ACADL-dependent mechanoresponsive pathway is a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metabolismo dos Lipídeos/genética , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Linhagem Celular Tumoral , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Fatores de Transcrição de Domínio TEA
17.
J Pharm Sci ; 112(9): 2561-2569, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37187260

RESUMO

The confidence in fraction unbound (ƒu) using equilibrium dialysis (ED) is often questioned (e.g., highly bound, labile compounds) due to uncertainty in whether true equilibrium is achieved. Different methods have been developed to increase confidence in ƒu measurements, such as the presaturation, dilution, and bi-directional ED methods. However, confidence in ƒu measurement can still suffer due to non-specific binding and inter-run variations introduced during equilibrium and analysis. To address this concern, we introduce an orthogonal approach called counter equilibrium dialysis (CED) in which non-labeled and isotope-labeled compounds are dosed counter-directionally in rapid equilibrium dialysis (RED). ƒu values of both non-labeled and labeled compounds are measured simultaneously in the same run. These tactics not only minimize non-specific binding and inter-run variability but also enable the confirmation of true equilibrium. If equilibrium is reached in both dialysis directions, the ƒu for the non-labeled compound and the labeled compound will converge. The refined methodology was extensively tested with various compounds of diverse physicochemical properties and plasma binding characteristics. Our results demonstrated that, by using the CED method, ƒu values for a wide range of compounds could be accurately determined with significantly improved confidence, including the challenging highly bound and labile compounds.


Assuntos
Proteínas Sanguíneas , Diálise Renal , Proteínas Sanguíneas/metabolismo , Ligação Proteica , Plasma/metabolismo , Diálise/métodos
18.
Front Oncol ; 13: 1140635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056345

RESUMO

Background: Algorithm malfunction may occur when there is a performance mismatch between the dataset with which it was developed and the dataset on which it was deployed. Methods: A baseline segmentation algorithm and a baseline classification algorithm were developed using public dataset of Lung Image Database Consortium to detect benign and malignant nodules, and two additional external datasets (i.e., HB and XZ) including 542 cases and 486 cases were involved for the independent validation of these two algorithms. To explore the impact of localized fine tuning on the individual segmentation and classification process, the baseline algorithms were fine tuned with CT scans of HB and XZ datasets, respectively, and the performance of the fine tuned algorithms was tested to compare with the baseline algorithms. Results: The proposed baseline algorithms of both segmentation and classification experienced a drop when directly deployed in external HB and XZ datasets. Comparing with the baseline validation results in nodule segmentation, the fine tuned segmentation algorithm obtained better performance in Dice coefficient, Intersection over Union, and Average Surface Distance in HB dataset (0.593 vs. 0.444; 0.450 vs. 0.348; 0.283 vs. 0.304) and XZ dataset (0.601 vs. 0.486; 0.482 vs. 0.378; 0.225 vs. 0.358). Similarly, comparing with the baseline validation results in benign and malignant nodule classification, the fine tuned classification algorithm had improved area under the receiver operating characteristic curve value, accuracy, and F1 score in HB dataset (0.851 vs. 0.812; 0.813 vs. 0.769; 0.852 vs. 0.822) and XZ dataset (0.724 vs. 0.668; 0.696 vs. 0.617; 0.737 vs. 0.668). Conclusions: The external validation performance of localized fine tuned algorithms outperformed the baseline algorithms in both segmentation process and classification process, which showed that localized fine tuning may be an effective way to enable a baseline algorithm generalize to site-specific use.

19.
World J Surg Oncol ; 21(1): 126, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032348

RESUMO

BACKGROUND: Laparoscopic liver resection (LLR) is controversial in treating intrahepatic cholangiocarcinoma (ICC). Therefore, this study aimed to evaluate the safety and feasibility of LLR for the treatment of ICC and explored the independent factors affecting the long-term prognosis of ICC. METHODS: We included 170 patients undergoing hepatectomy for ICC from December 2010 to December 2021 and divided them into LLR group and open liver resection (OLR) group. We used propensity score matching (PSM) analysis to reduce the impact of data bias and confounding variables and then compared the short-term and long-term prognosis of LLR and OLR in treating ICC; Cox proportional hazards regression model was adopted to explore the independent factors affecting the long-term prognosis of ICC. RESULTS: A total of 105 patients (70 in the LLR group and 35 in the OLR group) were included after 2:1 PSM analysis. There was no difference in demographic characteristics and preoperative indexes between the two groups. The perioperative results of the OLR group were worse than those of the LLR group, that is, the intraoperative blood transfusion rate (24 (68.6) vs 21 (30.0)), blood loss (500 (200-1500) vs 200 (100-525)), and the morbidity of major postoperative complications (9 (25.7) vs 6 (8.5)) in the OLR group were worse than those in LLR group. LLR could enable patients to obtain an equivalent long-term prognosis compared to OLR. The Cox proportional hazards regression model exhibited that no matter before or after PSM, preoperative serum CA12-5 and postoperative hospital stay were independent factors affecting overall survival, while only lymph node metastasis independently influenced recurrence-free survival. CONCLUSIONS: Compared with ICC treated by OLR, the LLR group obtained superior perioperative period outcomes. In the long run, LLR could enable ICC patients to receive an equivalent long-term prognosis compared to OLR. In addition, ICC patients with preoperative abnormal CA12-5, lymph node metastasis, and more extended postoperative hospital stay might suffer from a worse long-term prognosis. However, these conclusions still need multicenter extensive sample prospective research to demonstrate.


Assuntos
Carcinoma Hepatocelular , Colangiocarcinoma , Laparoscopia , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatectomia/métodos , Estudos Prospectivos , Pontuação de Propensão , Metástase Linfática , Estudos de Viabilidade , Estudos Retrospectivos , Laparoscopia/métodos , Colangiocarcinoma/cirurgia , Colangiocarcinoma/complicações , Tempo de Internação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...