Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 196: 105586, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945223

RESUMO

Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.


Assuntos
Bombyx , Animais , Bombyx/fisiologia , Seda/genética , Seda/metabolismo , Seda/farmacologia , Apoptose , Larva/metabolismo , Autofagia , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
2.
Front Plant Sci ; 14: 1175012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389295

RESUMO

Introduction: Titanium dioxide nanoparticles (TiO2 NPs) are among the most widely used inorganic nanomaterials in industry, medicine and food additives. There are increasing concerns regarding their potential risks to plants and the environment. Mulberry trees are widely grown in China due to their high survival rate and ability to aid ecological recovery. Methods: Herein, the effects of TiO2 NPs with different concentrations (100, 200, 400 and 800 mg/L) on the growth and physiology of the mulberry tree were systematically evaluated in aspects of physiology, transcriptomics and metabolomics. Results: Results showed that TiO2 NPs could be absorbed by the mulberry sapling root system and be transferred to the plant shoot. This results in the destruction of mulberry sapling root and leaf tissue. Furthermore, the number of chloroplasts and their pigment contents were reduced and the homeostasis of metal ions was disrupted. The toxic effects of TiO2 NPs attenuated the mulberry sapling's stress resistance, the contents of malondialdehyde in 100 mg/L, 200 mg/L 400 mg/L and 800 mg/L treatment groups increased by 87.70%, 91.36%, 96.57% and 192.19% respectively compared with the control group. The transcriptomic data showed that TiO2 NPs treatment mainly affected the expression of genes related to energy synthesis and transport, protein metabolism, and response to stress. Meanwhile, the results of metabolomics showed that 42 metabolites produced significant differences in mulberry, of which 26 differential metabolites were up-regulated in expression and 16 differential metabolites were down-regulated, mainly including metabolic pathways such as secondary metabolite biosynthesis, citric acid cycle, and tricarboxylic acid cycle, and was not conducive to the seed germination and or growth of the mulberry sapling. Discussion: This study enriches the understanding of the effects of TiO2 NPs on plants and provides a reference for the comprehensive scientific assessment of the potential risks of nanomaterials on plants.

3.
Pestic Biochem Physiol ; 188: 105266, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464371

RESUMO

Pyriproxyfen is an insect growth regulator that is widely used in public health and pest control in agriculture. Our previous studies have shown that trace amounts of pyriproxyfen in the environment can cause serious toxic effects in the non-target insect silkworm, including failing to pupate, metamorphose and spin cocoons. However, it is unknown why pyriproxyfen not only has no lethal effects on fifth instar larvae but also tend to increase their body weight. The midgut is the main digestive organs of the silkworm, our results showed that the residual of pyriproxyfen in the silkworm at 24 h after 1 × 10-4 mg/L pyriproxyfen treatment caused severe damage to the midgut microvilli, goblet cells, and nuclei of the silkworm, but body weight and digestibility of the larval were both increased. In addition, pyriproxyfen significantly (p < 0.05) increased the activities of digestive enzymes (α-amylase, trehalase, trypsin and lipase) in the midgut of silkworm. However, it caused down-regulation of ecdysone synthesis-related genes at the end of the fifth instar silkworm, decreased ecdysone titer, and prolonged larval instar. At the same time, pyriproxyfen also activated transcription of detoxification enzymes-related genes such as the cytochrome P450 enzyme genes Cyp9a22 and Cyp15C1, the carboxylesterase genes CarE-8 and CarE-11, and the glutathione S-transferase gene GSTo2. This study elucidated a novel toxicological effect of pyriproxyfen to insects, which not only expands the understanding of the effects of juvenile hormone pesticides on lepidopteran insects but also provides a reference for exploring the ecological security of non-target organisms.


Assuntos
Bombyx , Animais , Ecdisona , Insetos , Hormônios Juvenis/toxicidade , Larva , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...