Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1387735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720807

RESUMO

Background: Rhabdomyosarcoma(RMS) is the most common soft tissue sarcoma in children and single nucleotide polymorphisms(SNPs) in certain genes influence risk of RMS. Although FOXO3 had been reported in multiple cancers including RMS, the role of FOXO3 polymorphisms in RMS remains unclear. In this case-control study, we evaluated the association of FOXO3 SNPs with RMS risk and prognosis in children. Methods: Four FOXO3 SNPs(rs17069665 A>G, rs4946936 T>C, rs4945816 C>T and rs9400241 C>A) were genotyped in 110 RMS cases and 359 controls. The associations between FOXO3 polymorphisms and RMS risk were determined by odds ratios(ORs) with 95% confidence intervals(CIs). The associations of rs17069665 and rs4946936 with overall survival in RMS children were estimated using the Kaplan-Meier method and log-rank test. Functional analysis in silico was performed to estimate the probability that rs17069665 and rs4946936 might influence the regulation of FOXO3. Results: We found that rs17069665 (GG vs. AA+AG, adjusted OR=2.96; 95%CI [1.10-3.32]; P=0.010) and rs4946936 (TC+CC vs. TT, adjusted OR=0.48; 95%CI [0.25-0.90]; P=0.023) were related to the increased and decreased RMS risk, respectively. Besides, rs17069665(P<0.001) and rs4946936(P<0.001) were associated with decreased and increased overall survival in RMS patients, respectively. Functional analysis showed that rs17069665 and rs4946936 might influence the transcription and expression of FOXO3 via altering the bindings to MYC, CTCF, and/or RELA. Conclusions: This study revealed that FOXO3 polymorphisms influence the RMS susceptibility and prognosis in children, and might altered the expression of FOXO3. FOXO3 polymorphism was suggested as a biomarker for RMS susceptibility and prognosis.

2.
Research (Wash D C) ; 7: 0324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405130

RESUMO

Mitochondrial fission promotes glioma progression. The function and regulation mechanisms of lncRNAs in glioma mitochondrial fission are unclear. The expression of LINC00475 and its correlation with clinical parameters in glioma were analyzed using bioinformatics. Then, in vitro and in vivo assays were performed to explore the function of spliced variant LINC00475 (LINC00475-S) in gliomas. To explore the mechanisms, RNA-seq, MeRIP, RIP, pulldown-IP, dCas9-ALKBH5 editing system, LC/MS, and Western blotting were utilized. LINC00475 was confirmed to be overexpressed and with higher frequencies of AS events in gliomas compared to normal brain tissue and was associated with worse prognosis. In vitro and animal tumor formation experiments demonstrated that the effect of LINC00475-S on proliferation, metastasis, autophagy, and mitochondrial fission of glioma cells was significantly stronger than that of LINC00475. Mechanistically, METTL3 induced the generation of LINC00475-S by splicing LINC00475 through m6A modification and subsequently promotes mitochondrial fission in glioma cells by inhibiting the expression of MIF. Pull-down combined LC/MS and RIP assays identified that the m6A recognition protein HNRNPH1 bound to LINC00475 within GYR and GY domains and promoted LINC00475 splicing. METTL3 facilitated HNRNPH1 binding to LINC00475 in an m6A-dependent manner, thereby inducing generation of LINC00475-S. METTL3 facilitated HNRNPH1-mediated AS of LINC00475, which promoted glioma progression by inducing mitochondrial fission. Targeting AS of LINC00475 and m6A editing could serve as a therapeutic strategy against gliomas.

3.
J Cancer ; 15(6): 1762-1769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370381

RESUMO

Background: The potential relation of methyltransferase-like gene polymorphisms and epithelial ovarian cancer (EOC) remains unclear. Methods: Five SNPs (METTL5 rs3769767 A>G, METTL16 rs1056321 T>C, METTL5 rs10190853 G>A, METTL5 rs3769768 G>A and METTL16 rs11869256 A>G) of methyltransferase-like genes was selected trough NCBI dbSNP database. Two hundred and eighty-eight cases and 361 controls were enrolled from three hospitals in South China to conduct the case-control study. Genomic DNA was abstracted from peripheral blood and genotyped through a TapMan assay. Stratified analysis was conducted to explore the association of rs10190853, rs3769768, rs11869256 genotype and EOC susceptibility. The combination analysis was adopted to evaluate the relation between inferred haplotypes of the METTL5, METTL16 genes and EOC risk. Multifactor dimensionality reduction (MDR) analysis was performed to verify the interaction of SNPs. Results: Among the five analyzed SNPs, METTL5 rs3769768 AA exhibited a significant association with increased EOC risk, while METTL5 rs10190853 GA, METTL16 rs11869256 GA was certified to decrease the susceptibility of EOC. The stratified analysis further revealed the harmful effect of METTL5 rs3769768 AA in EOC patients. On the contrary, METTL16 rs11869256 AG/GG and METTL5 rs10190853 AA showed the reduced risk of EOC in patients of specific subgroups. Combination analysis identified that haplotypes AAA highly connected with reduced risk of EOC. MDR analysis revealed that these SNPs existed no specific interactions. Conclusion: METTL5 rs3769768 was related to increased risk of EOC. METTL5 rs10190853 and METTL16 rs11869256 decreased the susceptibility in EOC. METTL5 and METTL16 could be potential target of molecular therapy and prognosis markers.

4.
Neurol Sci ; 45(5): 2047-2055, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37973627

RESUMO

BACKGROUND: Huntington's disease (HD) is a rare progressive neurological disorder, and telemedicine has the potential to improve the quality of care for patients with HD. Deutetrabenazine (DTBZ) can reduce chorea symptoms in HD; however, there is limited experience with this medication in Asian countries. METHODS: Retrospective and prospective studies were employed to explore the feasibility and reliability of a video-based telemedicine system for HD patient care. Reliability was demonstrated through consistency between selected-item scores (SIS) and total motor scores (TMS) and the agreement of scores obtained from hospital and home videos. Finally, a single-centre real-world DTBZ management study was conducted based on the telemedicine system to explore the efficacy of DTBZ in patients with HD. RESULTS: There were 77 patients included in the retrospective study, and a strong correlation was found between SIS and TMS (r = 0.911, P < 0.0001), indicating good representativeness. There were 32 patients enrolled in the prospective study. The reliability was further confirmed, indicated by correlations between SIS and TMS (r = 0.964, P < 0.0001) and consistency of SIS derived from the in-person and virtual visits (r = 0.969, P < 0.0001). There were 17 patients included in the DTBZ study with a mean 1.41 (95% confidence interval, 0.37-2.46) improvement in chorea score and reported treatment success. CONCLUSIONS: A video-based telemedicine system is a feasible and reliable option for HD patient care. It may also be used for drug management as a supplementary tool for clinical visits.


Assuntos
Coreia , Doença de Huntington , Telemedicina , Tetrabenazina/análogos & derivados , Humanos , Doença de Huntington/complicações , Doença de Huntington/tratamento farmacológico , Coreia/tratamento farmacológico , Estudos Prospectivos , Estudos Retrospectivos , Reprodutibilidade dos Testes
5.
Cancer ; 130(6): 973-984, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38018448

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common cancer in children. IKZF3 (IKAROS family zinc finger 3) is a hematopoietic-specific transcription factor, and it has been validated that it is involved in leukemia. However, the role of IKZF3 single-nucleotide polymorphisms (SNPs) remains unclear. In this case-control study, the authors investigated the association of IKZF3 SNPs with ALL in children. METHODS: Six IKZF3 reference SNPs (rs9635726, rs2060941, rs907092, rs12946510, rs1453559, and rs62066988) were genotyped in 692 patients who had ALL (cases) and in 926 controls. The associations between IKZF3 polymorphisms and ALL risk were determined using odds ratios (ORs) and 95% confidence intervals (CIs). The associations of rs9635726 and rs2060941 with the risk of ALL were further estimated by using false-positive report probability (FPRP) analysis. Functional analysis in silico was performed to evaluate the probability that rs9635726 and rs2060941 might influence the regulation of IKZF3. RESULTS: The authors observed that rs9635726C>T (adjusted OR, 1.49; 95% CI, 1.06-2.11; p = .023) and rs2060941G>T (adjusted OR, 1.51; 95% CI, 1.24-1.84; p = .001) were related to and increased risk of ALL in the recessive and dominant models, respectively. Furthermore, the associations of both rs9635726 (FPRP = .177) and rs2060941 (FPRP < .001) with ALL were noteworthy in the FPRP analysis. Functional analysis indicated that rs9635726 and rs2060941 might repress the transcription of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. CONCLUSIONS: This study revealed that IKZF3 polymorphisms were associated with increased ALL susceptibility in children and might influence the expression of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. IKZF3 polymorphisms were suggested as a biomarker for childhood ALL.


Assuntos
Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Estudos de Casos e Controles , Genótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição Ikaros/genética , Predisposição Genética para Doença
6.
Cancer Cell Int ; 23(1): 302, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037057

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation accounts for a large proportion of AML patients and diagnosed with poor prognosis. Although the prognosis of FLT3-ITD AML has been greatly improved, the drug resistance frequently occurred in the treatment of FLT3 targeting drugs. GNF-7, a multitargeted kinase inhibitor, which provided a novel therapeutic strategy for overriding leukemia. In this study, we explored the antitumor activity of GNF-7 against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS: Growth inhibitory assays were performed in AML cell lines and Ba/F3 cells expressing various FLT3 mutants to evaluate the antitumor activity of GNF-7 in vitro. Western blotting was used to examine the inhibitory  effect of GNF-7 on FLT3 and its downstream pathways. Molecular docking and cellular thermal shift assay (CETSA) were performed to demonstrate the binding of FLT3 to GNF-7. The survival benefit of GNF-7 in vivo was assessed in mouse models of transformed Ba/F3 cells harboring FLT3-ITD and FLT3-ITD/F691L mutation. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of GNF-7. RESULTS: GNF-7 inhibited the cell proliferation of Ba/F3 cells expressing FLT3-ITD and exhibited potently anti-leukemia activity on primary FLT3-ITD AML samples. Moreover, GNF-7 could bind to FLT3 protein and inhibit the downstream signaling pathway activated by FLT3 including STAT5, PI3K/AKT and MAPK/ERK. In vitro and in vivo studies showed that GNF-7 exhibited potent inhibitory activity against FLT3-ITD/F691L that confers resistant to quizartinib (AC220) or gilteritinib. Importantly, GNF-7 showed potent cytotoxic effect on leukemic stem cells, significantly extend the survival of PDX model and exhibited similar therapy effect compared with gilteritinib. CONCLUSIONS: Our results show that GNF-7 is a potent FLT3-ITD inhibitor and may become a promising lead compound applied for treating some of the clinically drug resistant patients.

7.
Front Oncol ; 13: 1203002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023199

RESUMO

Objective: PIWIL1 polymorphisms' role in pediatric acute lymphoblastic leukemia (ALL) relapse susceptibility remains undiscovered. Methods: A case-control designed and multiple logistic regression model was performed to evaluate the overall risk of pediatric ALL and five single-nucleotide polymorphisms (SNPs) of PIWIL1 gene (rs35997018 C>T, rs1106042 A>G, rs7957349 C>G, rs10773771 C>T, and rs10848087 A>G) in 785 cases and 1,323 controls, which were genotyped by TaqMan assay. The odds ratio (OR) and its 95% confidence interval (CI) were used to estimate the relationship. Stratified analysis was used to investigate the correlation of rs1106042 and rs10773771 genotypes and pediatric ALL relapse susceptibility in terms of age, sex, number of white blood cells (WBC), immunophenotyping, gene fusion type, karyotype, primitive/naïve lymphocytes, and minimal residual disease (MRD) in bone marrow. Finally, the haplotype analysis was performed to appraise the relationship between inferred haplotypes of PIWIL1 and pediatric ALL risk. Results: Among the five analyzed SNPs, rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was related to decreased ALL risk. Compared to the GG genotype, the rs1106042 GA/AA had a deleterious effect on children of age <120 months, who were female and male, had high or average number of WBC, pro-B ALL, pre-B ALL, T-ALL, low- and middle-risk ALL, E2A-PBX fusion gene, non-gene fusion, abnormal diploid, high hyperdiploid, hypodiploid, and normal diploid. Moreover, rs1106042 A>G harmfully affected primitive/naïve lymphocytes and MRD on days 15-19, day 33, and week 12. On the contrary, rs10773771 TC/CC exhibited a protective effect on ALL children with the TEL-AML fusion gene. Haplotype analysis demonstrated that haplotypes CAGT, TACC, TACT, and TAGT were significantly associated with increased pediatric ALL relapse susceptibility. Conclusion: PIWIL1 rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was linked to decreased ALL risk in eastern Chinese children. Rs1106042 GA/AA may predict poor prognosis.

8.
J Inflamm Res ; 16: 5367-5383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026241

RESUMO

Purpose: Methyltransferase like 1 (METTL1) regulates epitranscriptomes via the m7G modification in mammalian mRNA and microRNA. Systemic lupus erythematosus (SLE) is caused by abnormal immune reactivity and has diverse clinical manifestations. RNA methylation as a mechanism to regulate gene expression is widely implicated in immune regulation. However, the role of m7G in immune response of SLE has not been extensively studied. Patients and Methods: Expression of METTL1 was identified in the public dataset GSE122459 and validated in an independent cohort of SLE patients. We investigated the association between METTL1-expression and clinical manifestations of SLE. Subsequently, differentially expressed genes (DEG) that were correlated with METTL1-expression in GSE122459 were used for functional enrichment analysis. The correlation between infiltrating immune cells and METTL1, as well as candidate biomarkers identified to be correlated with either METTL1 or immune cell infiltration were assessed by single-sample GSEA. Potential mechanisms were explored with Gene ontology and KEGG pathway enrichment. Diagnostic performances of candidate biomarkers in SLE were analyzed. Results: The mRNA and protein expression of METTL1 in SLE patients were significantly decreased in both datasets. METTL1-coexpressed DEGs were enriched in several key immune-related pathways. Activated CD8 T cells, activated CD4 T cells, memory B cells and type 2 helper T cells were different between patients with high and low METTL1 expression. Further, activated CD8 T-cells, activated CD4 T-cells, memory B-cells were correlated with METTL1. The genes of LAMP3, CD83, PDCD1LG2, IGKVD3D-20, IGKV5-2, IGKV2D-30, IGLV3-19 and IGLV4-60 were identified as candidate targets that were correlated with immune cell proportion. Moreover, LAMP3, CD83, and PDCD1LG2 expression were of diagnostic value in SLE as indicated by ROC analysis. Conclusion: Our findings suggested that METTL1 and its candidate targets LAMP3, CD83, PDCD1LG2 may be used for diagnosing SLE and could be explored for developing targeted molecular therapy for SLE.

9.
Ann Hematol ; 102(9): 2483-2492, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37217676

RESUMO

Adenosine deaminase acting on RNA1 (ADAR1), catalyzing post-transcriptional adenosine-to-inosine RNA editing, promotes cancer progression and therapeutic resistance. However, very little is known about the association of ADAR1 variants with acute lymphoblastic leukemia (ALL). Here we first explored the potential association of three polymorphisms (rs9616, rs2229857, and rs1127313) of ADAR1 with susceptibility in Chinese children ALL, then functionally characterized ADAR1 in ALL. Our results demonstrated that rs9616 T and rs2229857 T were associated with increased expression of ADAR1 mRNA and higher risk to ALL. Of note, a stronger risk effect of rs2229857 T genotypes was found among relapse children. Furthermore, ADAR1 knockdown specifically inhibited proliferation and promoted apoptosis in ALL cells. These findings give insights into a mechanism by which the risk variant at rs9616 and rs2229857 modulate ADAR1 expression and confers a predisposition and relapse risk to ALL, and representing a potential novel biomarker for pediatric ALL.


Assuntos
Adenosina Desaminase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RNA Mensageiro
10.
J Gene Med ; 25(4): e3474, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680332

RESUMO

BACKGROUND: The role of splicing factor-coding gene polymorphisms in pediatric acute lymphoblastic leukemia (ALL) susceptibility is still unclear. METHODS: A case-control designed model was used to estimate the overall risk of pediatric ALL and five single nucleotide polymorphisms (SNPs) of splicing factor-coding genes in 808 cases and 1,340 controls, which were genotyped using a TaqMan assay. Stratified analysis was performed to explore the association of rs2233911 genotype and pediatric ALL susceptibility. The influence of splicing factor arginine/serine-rich 1 (SFRS1) polymorphisms on the sensitivity to different chemotherapeutic regimens based on minimal residual disease (MRD) levels was analyzed. The haplotype analysis was adopted to evaluate the association between inferred haplotypes of the splicing factor-coding genes and pediatric ALL risk. RESULTS: Among the five analyzed SNPs, SFRS1 rs2233911 AG/GG exhibited a significant association with increased pediatric ALL risk. The stratified analysis further identified the harmful effect of SFRS1 rs2233911 AG/GG in specific subgroups. Moreover, rs2233911 AG/GG had a protective effect on MRD in marrow of ≥0.01%  12 weeks of Chinese Children Cancer Group chemotherapeutics, but provided a harmful effect on MRD in the marrow of ≥0.01% at days 15-19 of the South China Children Leukemia Group chemotherapeutics. Haplotype analysis of these five SNPs yielded haplotypes ACGCC and ACGTC significantly correlating with increased pediatric ALL susceptibility. On the contrary, haplotypes GCATG and GTACC were linked with remarkably decreased pediatric ALL risk. CONCLUSION: SFRS1 gene polymorphism was associated with increased pediatric ALL risk and indicated that rs2233911 AG/GG might be a potential biomarker for choosing chemotherapeutics.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Fatores de Processamento de Serina-Arginina , Criança , Humanos , Estudos de Casos e Controles , População do Leste Asiático , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Fatores de Processamento de Serina-Arginina/genética
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1324-1330, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36208230

RESUMO

OBJECTIVE: To investigate the expression of ROBO3 in pediatric AML patients and explore its function on cell proliferation and apoptosis. METHODS: The expression of ROBO3 in pediatric AML patients at different treatment stage was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The relationship between the expression of ROBO3 and clinic pathological characteristics in newly diagnosed pediatric AML patients was analyzed. Moreover, the effects of ROBO3 on the proliferation and apoptosis of AML cell lines HL-60 and THP-1 were estimated by using CCK-8 and flow cytometry after transfection with ROBO3 siRNA. RESULTS: It was found that ROBO3 expression was significantly increased in most of newly diagnosed pediatric AML patients, especially in non-M3 subtype, younger patients (<10 years old), and high risk group, compared to corresponding controls. Furthermore, the expression level of ROBO3 was sharply decreased in patients who achieved complete remission. Targeting ROBO3 significantly inhibited AML cell proliferation, as well as increased apoptosis by ROBO3 siRNA transfection in vitro. CONCLUSION: ROBO3 is differentially expressed within distinct subtypes of the pediatric AML patients, which suggested that ROBO3 may be a potential biomarker and a new therapeutic target for pediatric AML.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Criança , Humanos , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , RNA Interferente Pequeno , Receptores de Superfície Celular , Sincalida
12.
Stem Cell Res Ther ; 13(1): 277, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765041

RESUMO

BACKGROUND: Hematopoietic stem cell transplantation (HSCT) is a standard therapy strategy for most malignant disorders in children. However, transplant-related pneumonia remains a major therapy challenge and mesenchymal stromal cells (MSCs) are rarely reported in HSCT-related pneumonia. The aim of our study was to assess the efficacy of MSC for HSCT-related pneumonia in children. METHODS: We retrospectively retrieved HSCT-related (severe and non-severe) pneumonia cases (aged < 18 years), which underwent MSC treatment (MSC group) or non-MSC treatment (non-MSC group) in Guangzhou Women and Children's Medical Center, from December 2017 to December 2019. We investigated outcomes of the two different treatments among severe cases and non-severe cases, respectively. The primary endpoints were differences in overall cure rate and time to cure between MSC and non-MSC groups. The secondary endpoints were 180-day overall survival and cumulative cure rate. RESULTS: Finally, 31 severe pneumonia cases (16 in MSC group, 15 in non-MSC group) and 76 non-severe cases (31 in MSC group, 45 in non-MSC group) were enrolled in this study. Among severe pneumonia cases, overall cure rate in MSC group was significant higher than that in non-MSC group (12[75.0%] vs. 5[33.3%]; OR = 6.00, 95% CI [1.26-28.5]; p = 0.020); the time (days) to cure in MSC group was dramatically reduced compared with that in non-MSC group (36 [19-52] vs. 62 [42-81]; OR = 0.32, 95% CI [0.12-0.88]; p = 0.009); the 180-day overall survival in MSC group was better than that in non-MSC group (74.5% [45.4-89.6] vs. 33.3% [12.2-56.4]; p = 0.013). Among non-severe pneumonia cases, the time (days) to cure in MSC group was notably decreased compared with that in non-MSC group (28 [24-31] vs. 33 [26-39]; OR = 0.31, 95% CI [0.18-0.56]; p = 0.003). Compared with non-MSC group, MSC-treated patients achieved significant improvements of cumulative cure rate not only in severe pneumonia cases (p = 0.027), but also in non-severe cases (p < 0.001). CONCLUSIONS: This study revealed that MSC treatment could contribute to improving outcomes in children with pneumonia post-HSCT, especially in severe cases. These findings suggest MSC treatment as a promising therapy for HSCT-related pneumonia in children.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Pneumonia , Criança , Feminino , Humanos , Pneumonia/terapia , Estudos Retrospectivos
13.
Front Oncol ; 12: 1082525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698387

RESUMO

Objective: To explore the functions of the polymorphisms in 5-methylcytosine (m5C) modification-related coding genes on the susceptibility of pediatric acute lymphoblastic leukemia (ALL). Methods: Case-control study and multinomial logistic regression analysis were performed to construct models to evaluate the susceptibility of pediatric ALL. The relationship between five functional SNPs in m5C modification-coding genes and pediatric ALL risk was analyzed. Genotyping of 808 cases and 1,340 healthy samples from South China was identified using a TaqMan assay; odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the relationship between the five selected SNPs and pediatric ALL susceptibility. Results: Among the five analyzed SNPs, NOL1 rs3764909 and NSUN4 rs10252 variants significantly increased the susceptibility of pediatric ALL, while NSUN3 rs7653521, NSUN5 rs1880948, and NSUN6 rs3740102 variants were not associated with the risk of ALL. Stratification analyses demonstrated that NOL1 rs3764909 C>A exhibited a significant association with increased pediatric ALL risk in subgroups of common B ALL, pre-B ALL, T-cell ALL, low and middle risk, other gene fusion types, non-gene fusion, hypodiploid, normal diploid, primitive lymphocytes in marrow < 5% on week 12, and minimal residual disease (MRD) <0.01% on week 12 after induced therapy; NSUN4 rs10252 G>A was related to increased risk of ALL children in subgroups of age ≥ 120 months, normal white blood cell (WBC) number, middle risk, non-gene fusion, MRD ≥ 0.01 on days 15-19, and primitive lymphocytes in marrow < 5% on day 33 after induced therapy. Compared with the reference haplotype CAGTA, children who harbored haplotypes CCGTG and ACATA were remarkably related to increased ALL susceptibility. rs3764909 and rs10252 varieties of alleles were not associated with MRD levels after the selected chemotherapeutics. Conclusions: In conclusion, NOL1 rs3764909 and NSUN4 rs10252 variants were enhanced by pediatric ALL risk and were suggested to be potential biomarkers for pediatric ALL.

14.
Cancer Manag Res ; 13: 9189-9200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34934362

RESUMO

BACKGROUND/AIM: Acute lymphoblastic leukemia (ALL) is the most common form of pediatric cancer. METTL14, an N6-methyladenosine (m6A) modification protein, plays several roles in cancer development and is involved in the pathogenesis of various types of cancers. However, the role of METTL14 gene single nucleotide polymorphisms (SNPs) in pediatric ALL susceptibility remains to be investigated. METHODS: A case-control design and multinomial logistic regression were used to develop models to estimate the overall risk for pediatric ALL and three METTL14 gene SNPs (rs298982 G/A, rs298981 A/G and rs1064034 T/A) in 808 cases and 1340 controls, which were genotyped using a TaqMan assay. The associations were estimated by odds ratios (ORs) with their 95% confidence intervals (CIs). Furthermore, stratified analysis was performed to explore associations of rs298982 and rs1064034 with pediatric ALL susceptibility in terms of age, sex, immunophenotype, minimal residual disease (MRD), and other clinical characteristics. RESULTS: Among the three analyzed SNPs, rs298982 G/A and rs1064034 T/A exhibited a significant association with decreased childhood ALL risk, while rs298981 A/G exhibited no difference. In stratified analysis, rs298982 GA/AA and rs1064034 TA/AA had a protective effect in children <120 months of age and males, common B ALL, TEL-AML, non gene fusion, normal diploid, and high WBC. However, the rs1064034 TA/AA genotype was associated with an increased risk of mixed immunophenotyping. Compared with the reference haplotype GAT, haplotypes CAA, CGT and CGA were significantly associated with elevated ALL risk, while haplotype GGT was significantly associated decreased ALL risk. Moreover, subjects carrying rs298982 A or rs1064034 A exhibited less minimal MRD after induced chemotherapy. Functional annotations revealed that METTL14 gene SNPs rs298982 G/A and rs1064034 T/A could be potential functional variants. CONCLUSION: In conclusion, METTL14 gene polymorphisms influence the risk of ALL in southern Chinese children and might be potential biomarkers for pediatric ALL susceptibility and chemotherapeutics.

15.
Mol Cancer ; 20(1): 139, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702297

RESUMO

BACKGROUND: Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and have been confirmed to be critical in tumorigenesis and to be potential biomarkers or therapeutic targets. However, only a few circRNAs have been functionally characterized in pediatric acute myeloid leukemia (AML). METHODS: Here, we investigated the expression pattern of circRNAs in pediatric AML using a circRNA microarray. The characteristics, potential diagnostic value, and prognostic significance of circRNF220 were evaluated. A series of functional experiments were performed to investigate the role of circRNF220 in primary pediatric AML cells. Then we investigated the aberrant transcriptional networks regulated by circRNF220 in primary AML cells by RNA-seq. Furthermore, biotin RNA pulldown assays were implemented to verify the relationship between circRNF220 and miR-30a. RESULTS: We identified a circRNA, circRNF220, which was specifically abundant in and accumulated in the peripheral blood and bone marrow of pediatric patients with AML. It could distinguish AML from ALL and other hematological malignancies with high sensitivity and specificity. Significantly, circRNF220 expression independently predicted prognosis, while high expression of circRNF220 was an unfavorable prognostic marker for relapse. Furthermore, we characterized the function of circRNF220 and found that circRNF220 knockdown specifically inhibited proliferation and promoted apoptosis in AML cell lines and primary cells. Mechanistically, circRNF220 may act as an endogenous sponge of miR-30a to sequester miR-30a and inhibit its activity, which increases the expression of its targets MYSM1 and IER2 and implicated in AML relapse. CONCLUSIONS: Collectively, these findings demonstrated that circRNF220 could be highly efficient and specific for the accurate diagnosis of pediatric AML, with implications for relapse prediction.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , RNA Circular/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Fatores Etários , Apoptose/genética , Estudos de Casos e Controles , Ciclo Celular/genética , Linhagem Celular Tumoral , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Lactente , Masculino , Modelos Biológicos , Prognóstico , Curva ROC , Recidiva
16.
Front Oncol ; 11: 635251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568001

RESUMO

OBJECTIVE: To reveal the contributing role of METTL3 gene SNPs in pediatric ALL risk. PATIENTS AND METHODS: A total of 808 pediatric ALL cases and 1,340 cancer-free controls from five hospitals in South China were recruited. A case-control study by genotyping three SNPs in the METTL3 gene was conducted. Genomic DNA was abstracted from peripheral blood. Three SNPs (rs1263801 C>G, rs1139130 A>G, and rs1061027 A>C) in the METTL3 gene were chosen to be detected by taqman real-time polymerase chain reaction assay. RESULTS: That rs1263801 C>G, rs1139130 A>G, and rs1061027 A>C polymorphisms were significantly associated with increased pediatric ALL risk was identified. In stratification analyses, it was discovered that rs1263801 CC, rs1061027 AA, and rs1139130 GG carriers were more likely to develop ALL in subgroups of common B-ALL, MLL gene fusion. Rs1263801 CC and rs10610257 AA carriers were more possible to increase the risk of ALL in subgroups of low hyperdiploid, and all of these three SNPs exhibited a trend toward the risk of ALL. All of these three polymorphisms were associated with the primitive/naïve lymphocytes and MRD in marrow after chemotherapy in ALL children. Rs1263801 CC and rs1139130 AA alleles provided a protective effect on MRD ≥0.01% among CCCG-treated children. As for rs1139130, AA alleles provided a protective effect on MRD in marrow ≥0.01% on 33 days and 12 weeks among CCCG-treated children, but provided a risk effect on MRD in the marrow ≥0.01% among SCCLG-treated children. As for rs1263801 CC and rs1139130 AA, these two alleles provided a protective effect on MRD in the marrow ≥0.01% among CCCG-treated children. CONCLUSION: In this study, we revealed that METTL3 gene polymorphisms were associated with increased pediatric ALL risk and indicated that METTL3 gene polymorphisms might be a potential biomarker for choosing ALL chemotherapeutics.

17.
Biofactors ; 47(4): 612-626, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33811687

RESUMO

Species differences in the metabolism of xenobiotics by cytochrome P450 are critical in evaluating the use of experimental animals in studying toxic compounds relevant to human diseases. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which is produced by high-temperature cooking of fish and meat, is activated to become a carcinogen by cytochrome P4501A2 (CYP1A2) through N2 -hydroxylation in humans, but is detoxified by Cyp1a2 through 4'-hydroxylation in mice. CYP1A-humanized (hCYP1A) mice, in which mouse Cyp1a is replaced with human CYP1A, show constitutive human xenobiotic metabolism by hCYP1A, thereby serving as a suitable model for studying PhIP. Previous studies have demonstrated that oral administration of PhIP induces colon tumors in hCYP1A mice; however, these studies used a super-high dose, raising concerns regarding the relevance of the mechanism to human cancer. Herein, we systematically investigated PhIP-induced colon carcinogenesis in hCYP1A mice treated with lower doses. We found that a dose 2000 times lower than that used previously, which is comparable to human daily intake levels, could induce colon tumors, albeit at a lower incidence rate. We further investigated the transcriptome changes in the colon of hCYP1A mice treated with PhIP and identified that PhIP treatment increased the expression of Bax, Btg2, Ccng1, Cdkn1a, and Trp53inp1 and decreased the expression of Igf1 and Ccnd1. Since these genes are key components of the p53-dependent DNA damage response, the altered expression patterns indicated PhIP-induced DNA damage in hCYP1A mice. Together, these results prove that hCYP1A mice are suitable for studying PhIP-induced carcinogenesis and show that PhIP is an important colorectal cancer carcinogen in human diet.


Assuntos
Carcinógenos/toxicidade , Neoplasias do Colo/genética , Citocromo P-450 CYP1A2/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imidazóis/toxicidade , Proteína Supressora de Tumor p53/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Culinária/métodos , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina G1/genética , Ciclina G1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Dano ao DNA , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Inativação Metabólica/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Transgenes , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
18.
J Cell Biochem ; 121(2): 2019-2026, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31691337

RESUMO

Acute lymphoblastic leukemia (ALL) is the most frequently diagnosed cancer in children and single-nucleotide polymorphisms (SNPs) in certain genes influence risk of ALL. Although FOXO3 had been demonstrated to be involved leukemia, the role of FOXO3 polymorphisms was still not clear. In the present study, we explored the association of FOXO3 SNPs with ALL risk in Chinese children. We genotyped four polymorphisms (rs17069665 A>G, rs4945816 T>C, rs4946936 C>T, and rs9400241 A>C) of FOXO3 in 425 ALL cases and 1339 health controls. The associations were estimated by odds ratios (ORs) with their 95% confidence intervals (CIs). Further analyses were performed to explore associations of rs17069665 and rs9400241 with ALL susceptibility in terms of age, gender, immunophenotype, minimal residual disease (MRD), and other clinical characteristics. We found rs17069665 related to the increased ALL risk (OR = 1.76; 95% CI = 1.02-3.04), rs9400241 related to decreased ALL risk (OR = 0.80; 95% CI = 0.64-0.99). The effects of rs17069665 on ALL risk were more predominant in males and children < 10 years, and patients with lower rates of platelet or neutrophil. As for rs9400241, the effects were more predominant in children < 10 years, and in patients with pre B ALL, positive MRD, anemia, or hepatomegaly. In conclusion, FOXO3 gene polymorphisms influence the risk of ALL in children and might be a potential biomarker for ALL susceptibility.


Assuntos
Povo Asiático/genética , Biomarcadores Tumorais/genética , Proteína Forkhead Box O3/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Estudos de Casos e Controles , Criança , China/epidemiologia , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Fatores de Risco
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(3): 741-746, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31204925

RESUMO

OBJECTIVE: To study whether the Bmi-1 gene can be a biomarker for analysis of clinical risk stratification and prognosis of ALL patients. METHODS: The expression level of Bmi-1 gene in bone marrow samples from 127 cases of newly diagnosed ALL was detected by qRT-PCR, at the same time the expression level of Bmi-1 protein in bone marrow samples from above-mentioned cases was detected by Western blot. The collected samples were divided into 3 groups: high, intermediate and low risk according to clinical risk stratfication, the relationship between Bmi-1 expression and risk grade of ALL patients was analyzed; at the same time the collected samples were divided into 2 groups: prednisone good response (PGR) and prednisone poor respouse (PPR) according to the sensitivity of prednison test, and the sensitivily to prednisone in 2 groups was compared; moreover, the collected samples were divided into 2 groups: high level and low level according to median of Bmi-1 level, and the relation of Bmi-1 level with prognosis of patients was analyzed by using the Kaplan-Meier method. RESULTS: The expression level of Bmi-1 in low risk group was lowest, while that in high risk group was highest, however that in intermediat risk group was between the low and high risk groups, statistical analysis showed significant difference (P<0.05). The expression level of Bmi-1 in PPR group was significantly higher than that in PGR group (P<0.001). The Kaplan-Meier analysis showed that the RFS rate in Bmi-1 high expression group was significantly lower than that in Bmi-1 low expression group (73.0% vs 90.6%) (P<0.001). CONCLUSION: The Bmi-1 can be used as a molecular marker for the analysis of chinical risk and prognosis of pediatric ALL.


Assuntos
Complexo Repressor Polycomb 1/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Biomarcadores , Criança , Humanos , Estimativa de Kaplan-Meier , Prednisona , Prognóstico
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 26(6): 1610-1615, 2018 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-30501692

RESUMO

OBJECTIVE: To investigate whether the down-regulation of miR-125b can reverse the drug-resistence of doxorubicine-resistant leukemia cell lines or not, so as to explore a new method for treatment of drug-resistant leukemia patients. METHODS: The expression levels of miR125b in doxorubicine drug-sensitive and doxorubicine drug-resistant leukemia cell lines.HL-60, K562 and HL-60/Dox, the K562/Dox were detected by using RT-qPCR; the up-regulation or inhibition of miR-1256 expression in HL-60/Dox were performed by electroporation transfection, then the viability of cells treated with doxorubicine of different concentration was detected by CCK-8 method, the proliferation inhibition curve of cells was drawed, and the IC50 was calculated. RESULTS: The miR-125b expression was obviously up-regulated in drug-resistant cell lines HL-60/DOX and K562/DOX, as compared with HL-60 and K562 cell lines. The miR-125b expression level in HL-60/DOX and K562/DOX cells was 15 times and 5 times higher than that in HL-60 and K562 cells, respectively. The up-regulating or inhibiting expression of miR-125b in HL-60/DOX cells found that the proliferation inhibition rate in cells transfected with miR-125b mimic significantly decreased, compared with control group (P<0.01), while the proliferation inhibition rate in cells transfected with miR-125b inhibitor significantly increased, compared with control group(P<0.01). CONCLUSION: The miR-125b expression in HL-60/Dox and K562/Dox cells has been up-regulated, down-regulation of miR-125b expression can reverse the drug resistance of leukemia cells to doxorubicine.


Assuntos
Regulação para Baixo , Leucemia , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Humanos , Células K562 , MicroRNAs
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...