Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(9): 5073-5087, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656276

RESUMO

L-Arabinose, lactulose, and Lactobacillus plantarum (L. plantarum) have been reported to have glucolipid-lowering effects. Here, the effects of L-arabinose and lactulose combined with L. plantarum on obesity traits were investigated. According to the experimental results, the combination of L-arabinose, lactulose, and L. plantarum was more effective at reducing body weight, regulating glucolipid metabolism, and improving insulin resistance. Besides, this combination showed immunomodulatory activity by adjusting the T lymphocyte subsets and reduced the immune-related cytokine production. Moreover, it improved the gut barrier, ameliorated the disorder of gut microbiota, and upregulated the levels of SCFAs. More importantly, the AL group, LP group, and ALLP group showed different regulatory effects on the abundance of Bifidobacterium and Lactobacillus due to the presence of lactulose and L. plantarum. These findings elucidate that the combination of L-arabinose, lactulose, and L. plantarum constitutes a new synbiotic combination to control obesity by modulating glucolipid metabolism, immunomodulatory activity, inflammation, gut barrier, gut microbiota and production of SCFAs.


Assuntos
Arabinose , Dieta Hiperlipídica , Microbioma Gastrointestinal , Lactobacillus plantarum , Lactulose , Camundongos Endogâmicos C57BL , Obesidade , Animais , Obesidade/metabolismo , Arabinose/farmacologia , Camundongos , Lactulose/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Probióticos/administração & dosagem , Resistência à Insulina
2.
mSystems ; 9(4): e0014724, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445871

RESUMO

Microorganisms regulate numerous ecosystem functions and show considerable differences along a latitudinal gradient. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of ecosystem multifunctionality (EMF) and how microbial communities affect EMF along a latitudinal gradient remain unclear. Here, we collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. We also determined microbial diversity (taxonomic and functional) and microbial network complexity using metagenomic sequencing. The results showed that EMF significantly decreased with increasing latitude in riparian rhizosphere and bulk soils but not in channel sediments. Microbial taxonomic and functional richness (observed species) in channel sediments were significantly higher in the low-latitude group than in the high-latitude group. However, microbial co-occurrence networks were more complex in the high-latitude group compared with the low-latitude group. Abiotic factors, primarily geographic and climatic factors, contributed more to EMF than microbial diversity and network complexity parameters in which only betweenness centralization had a significant relationship with EMF. Together, this study provides insight into the latitudinal pattern of EMF in rivers and highlights the importance of large-scale factors in explaining such latitudinal patterns.IMPORTANCEEcosystem multifunctionality (EMF) is the capacity of an ecosystem to provide multiple functions simultaneously. Microorganisms, as dominant drivers of belowground processes, have a profound effect on ecosystem functions. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of EMF and how microbial communities affect EMF along a latitudinal gradient remain unclear. We collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers along a latitudinal gradient across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. This study fills a critical knowledge gap regarding the latitudinal patterns and drivers of EMF in river ecosystems and gives new insights into how microbial diversity and network complexity affect EMF from a metagenomic perspective.


Assuntos
Microbiota , Rios , Rizosfera , Plantas , Solo/química , Nitrogênio
3.
Microbiol Res ; 279: 127570, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096690

RESUMO

Type VI secretion system (T6SS) plays an essential role in interspecies interactions and provides an advantage for a strain with T6SS in multispecies biofilms. However, how T6SS drives the bacterial community structure and functions in multispecies biofilms still needs to be determined. Using gene deletion and Illumina sequencing technique, we estimated bacterial community responses in multispecies biofilms to T6SS by introducing T6SS-containing Pseudomonas putida KT2440. Results showed that the niche structure shifts of multispecies biofilms were remarkably higher in the presence of T6SS than in the absence of T6SS. The presence of T6SS significantly drove the variation in microbial composition, reduced the alpha-diversity of bacterial communities in multispecies biofilms, and separately decreased and increased the relative abundance of Proteobacteria and Bacteroidota. Co-occurrence network analysis with inferred putative bacterial interactions indicated that P. putida KT2440 mainly displayed strong negative associations with the genera of Psychrobacter, Cellvibrio, Stenotrophomonas, and Brevundimonas. Moreover, the function redundancy index of the bacterial community was strikingly higher in the presence of T6SS than in the absence of T6SS, regardless of whether relative abundances of bacterial taxa were inhibited or promoted. Remarkably, the increased metabolic network similarity with T6SS-containing P. putida KT2440 could enhance the antibacterial activity of P. putida KT2440 on other bacterial taxa. Our findings extend knowledge of microbial adaptation strategies to potential bacterial weapons and could contribute to predicting biodiversity loss and change in ecological functions caused by T6SS.


Assuntos
Pseudomonas putida , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Deleção de Genes , Biofilmes
4.
Analyst ; 149(1): 76-81, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37981837

RESUMO

A cyano-Raman label pH-responsive SERS probe was constructed by immobilizing 6-MPN molecules onto the surface of a single urchin Au nanoparticle (AuNP). The effects of different conditions on the synthetic materials were investigated and the optical properties of the single nanoparticles were evaluated. The peak-strength ratio of SERS probes at 1589 cm-1 and 2240 cm-1 exhibited a linear relationship in the pH range 4-7. The properties and stability of the probe were also verified by the acid-base cycle and ion interference tests.

5.
J Mater Chem B ; 11(46): 11164-11172, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37982293

RESUMO

The use of nanomaterials in drug delivery has gained significant attention in recent years. In this project, we developed a novel localized surface plasmon resonance (LSPR) nanoprobe on single gold triangular nanoplates (AuNTs) for dynamic monitoring of the drug carrier release process. Graphene, as the drug carrier, could be immobilized on the AuNT surface through the π-π* stacking effect. Upon loading or releasing the model drug (doxorubicin, DOX), subtle changes in the local microenvironment's dielectric constant around the AuNTs induced notable red-shifts or blue-shifts in the LSPR scattering spectra of single AuNTs. Furthermore, the spectral shifts led to a continuous enhancement in the red channel of the dark field microscopy (DFM) images during the drug release process in vitro, demonstrating that the drug release system is not susceptible to potential confounding factors. These release kinetics results under different conditions could be well-fitted using the Higuchi desorption model, further proving that this nanoprobe could be employed for evaluating the controlled release ability of 2D nanocarriers. These findings are expected to inspire new ideas and technologies in the preparation of more effective drug carriers, making a significant contribution to the development of drug delivery nanosystems and nanomedicine.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Doxorrubicina , Microscopia/métodos , Ressonância de Plasmônio de Superfície/métodos
6.
Hortic Res ; 10(8): uhad122, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554343

RESUMO

Roots are essential for plant growth and development. Bamboo is a large Poaceae perennial with 1642 species worldwide. However, little is known about the transcriptional atlas that underpins root cell-type differentiation. Here, we set up a modified protocol for protoplast preparation and report single-cell transcriptomes of 14 279 filtered single cells derived from the basal root tips of moso bamboo. We identified four cell types and defined new cell-type-specific marker genes for the basal root. We reconstructed the developmental trajectories of the root cap, epidermis, and ground tissues and elucidated critical factors regulating cell fate determination. According to in situ hybridization and pseudotime trajectory analysis, the root cap and epidermis originated from a common initial cell lineage, revealing the particularity of bamboo basal root development. We further identified key regulatory factors for the differentiation of these cells and indicated divergent root developmental pathways between moso bamboo and rice. Additionally, PheWOX13a and PheWOX13b ectopically expressed in Arabidopsis inhibited primary root and lateral root growth and regulated the growth and development of the root cap, which was different from WOX13 orthologs in Arabidopsis. Taken together, our results offer an important resource for investigating the mechanism of root cell differentiation and root system architecture in perennial woody species of Bambusoideae.

7.
Plants (Basel) ; 12(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570996

RESUMO

Moso bamboo (Phyllostachys edulis) is one of the fastest growing plants. Gibberellin (GA) is a key phytohormone regulating growth, but there are few studies on the growth of Moso bamboo regulated by GA. The gibberellin 20 oxidase (GA20ox) gene family was targeted in this study. Chromosomal distribution and collinearity analysis identified 10 GA20ox genes evenly distributed on chromosomes, and the family genes were relatively conservative in evolution. The genetic relationship of GA20ox genes had been confirmed to be closest in different genera of plants in a phylogenetic and selective pressure analysis between Moso bamboo and rice. About 1/3 GA20ox genes experienced positive selective pressure with segmental duplication being the main driver of gene family expansion. Analysis of expression patterns revealed that only six PheGA20ox genes were expressed in different organs of shoot development and flowers, that there was redundancy in gene function. Underground organs were not the main site of GA synthesis in Moso bamboo, and floral organs are involved in the GA biosynthesis process. The auxin signaling factor PheARF47 was located upstream of PheGA20ox3 and PheGA20ox6 genes, where PheARF47 regulated PheGA20ox3 through cis-P box elements and cis-AuxRR elements, based on the result that promoter analysis combined with yeast one-hybrid and dual luciferase detection analysis identified. Overall, we identified the evolutionary pattern of PheGA20ox genes in Moso bamboo and the possible major synthesis sites of GA, screened for key genes in the crosstalk between auxin and GA, and laid the foundation for further exploration of the synergistic regulation of growth by GA and auxin in Moso bamboo.

8.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446040

RESUMO

Cytokinin is widely involved in the regulation of plant growth, but its pathway-related genes have not been reported in Moso bamboo. In this study, a total of 129 candidate sequences were identified by bioinformatic methods. These included 15 IPT family genes, 19 LOG family genes, 22 HK family genes, 11 HP family genes and 62 RR family genes. Phylogenetic analysis revealed that the cytokinin pathway was closely related to rice, and evolutionary pattern analysis found that most of the genes have syntenic relationship with rice-related genes. The Moso bamboo cytokinin pathway was evolutionarily conservative and mainly underwent purifying selection, and that gene family expansion was mainly due to whole-gene duplication events. Analysis of transcriptome data revealed a tissue-specific expression pattern of Moso bamboo cytokinin family genes, with auxin and gibberellin response patterns. Analysis of co-expression patterns at the developmental stages of Moso bamboo shoots revealed the existence of a phytohormone co-expression pattern centered on cytokinin signaling genes. The auxin signaling factor PheARF52 was identified by yeast one-hybrid assay as regulating the PheRR3 gene through a P-box element in the PheRR3 promoter region. Auxin and cytokinin signaling crosstalk to regulate Moso bamboo growth. Overall, we systematically identified and analyzed key gene families of the cytokinin pathway in Moso bamboo and obtained key factors for auxin and cytokinin crosstalk, laying the foundation for the study of hormone regulation in Moso bamboo.


Assuntos
Reguladores de Crescimento de Plantas , Poaceae , Reguladores de Crescimento de Plantas/metabolismo , Filogenia , Poaceae/genética , Ácidos Indolacéticos/metabolismo , Citocininas/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
J Hazard Mater ; 457: 131713, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37301074

RESUMO

Microbial biotransformation of Cr(VI) is a sustainable approach to reduce Cr(VI) toxicity and remediate Cr(VI) contamination. In this study, Bacillus cereus SES with the capability of reducing both Cr(VI) and Se(IV) was isolated, and the effect of Se supplementation on Cr(VI) reduction by Bacillus cereus SES was investigated. Se(IV) addition enabled 2.6-fold faster Cr(VI) reduction, while B. cereus SES reduced 96.96% Se(IV) and produced more selenium nanoparticles (SeNPs) in the presence of Cr(VI). Co-reduction products of B. cereus SES on Cr(VI) and Se(IV) were SeNPs adsorbed with Cr(III). The relevant mechanisms were further revealed by proteomics. Se(IV) supplementation mediated the synthesis of Cr(VI) reductants and stress-resistant substances, thus enhancing Cr(VI) resistance and promoting Cr(VI) reduction. Meanwhile, high Se(IV) reduction rate was associated with Cr(VI)-induced electron transport processes, and Cr(VI) mediated the up-regulation of flagellar assembly, protein export and ABC transporters pathways to synthesis and export more SeNPs. Furthermore, Se combined with B. cereus SES had the potential to reduce the toxicity of Cr(VI) via reducing the bioavailability of Cr and improving the bioavailability of Se in soil. Results suggested that Se could be an efficient strategy to enhance the remediation of B. cereus SES on Cr contamination.


Assuntos
Nanopartículas , Selênio , Selênio/farmacologia , Selênio/metabolismo , Bacillus cereus/metabolismo , Oxirredução
10.
Endocrine ; 80(2): 399-407, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36930437

RESUMO

OBJECTIVE: To compare the diagnostic efficacy of the Chinese Thyroid Imaging Reporting and Data Systems (C-TIRADS) with the well-accepted ACR-TIRADS guidelines in identifying benign from malignant thyroid nodules. METHODS: A total of 2064 nodules were collected from 1627 patients undergoing thyroid ultrasonography in our center between October 2019 and November 2021. Nodules were divided into two groups: "≥1 cm" and "<1 cm". Ultrasound features of each nodule were observed and recorded by two physicians with more than 15 years of experience and classified according to the ACR-TIRADS and C-TIRADS guidelines, respectively. RESULTS: The area under the curve of the ACR-TIRADS guideline was higher than that of the C-TIRADS guideline (0.922, P = 0.017), the specificity and positive predictive value of the C-TIRADS guideline were higher (81.64%, 88.72%, all P < 0.05), which was more significant in the subgroup of nodules <1 cm (P = 0.001). In addition, there was no statistical difference between the two guidelines in the diagnostic efficacy indicators for nodules ≥1 cm. The ACR-TIRADS effectively reduced unnecessary biopsies compared with the C-TIRADS (P < 0.05). CONCLUSIONS: There was high agreement between the two guidelines for the diagnosis of thyroid nodules, C-TIRADS guidelines had a higher specificity and simplicity while were inferior to the ACR-TIRADS guidelines in terms of reducing the number of biopsies.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Biópsia por Agulha Fina , Sistemas de Dados , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/patologia , Ultrassonografia/métodos , China , Guias de Prática Clínica como Assunto , Estados Unidos
11.
J Ultrasound Med ; 42(3): 739-749, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36321389

RESUMO

OBJECTIVES: The aim of this meta-analysis was to evaluate the diagnostic value of contrast-enhanced ultrasound (CEUS) and high-resolution magnetic resonance imaging (HR-MRI) in patients with carotid vulnerable plaques. METHODS: A systematic review was conducted in PubMed, Embase, Cochrane Library, and Web of Science using the search terms carotid artery, atherosclerotic plaque, CEUS, contrast-enhanced ultrasound, HR-MRI, and high-resolution magnetic resonance. Studies published since the establishment of the library until December 2021 were retrieved. The statistical analyses were performed with Meta-DiSc version 1.4. Beyond that, the potential sources of heterogeneity for CEUS and HR-MRI were explored. RESULTS: Nine articles were included in this study. For CEUS, the pooled sensitivity and specificity for detecting carotid vulnerable plaques 91% (95% confidence interval [CI]: 84%, 95%) and 67% (95% CI: 54%, 79%), respectively. For HR-MRI, the pooled sensitivity and specificity were 78% (95% CI: 72%, 83%) and 65% (95% CI, 56%, 73%), respectively. The area under the summary receiver operating characteristic curve for CEUS and HR-MRI were 0.9218 and 0.8129, respectively. However, the difference in diagnostic accuracy between CEUS and HR-MRI diagnostic accuracy was not statistically significant. CONCLUSIONS: The study shows that the sensitivity of CEUS was higher than that of HR-MRI, and the specificity was similar to HR-MRI. CEUS and HR-MRI provide a similar diagnostic yield in detecting a vulnerable plaque. Thus, CEUS may be a useful tool for the diagnosis of carotid vulnerable plaques.


Assuntos
Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Meios de Contraste , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Ultrassonografia , Imageamento por Ressonância Magnética
12.
Carbohydr Polym ; 300: 120242, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372477

RESUMO

At present, the research and development of adsorbents for oil/water separation are mostly focused on polymer materials. The third generation of aerogels are made from nanocellulose prepared from abundant and sustainable cellulose. At present, there is concern regarding the use of nanocellulose aerogels (NAs) in oil/water separation. To improve the selective absorbability, the NAs should be hydrophobically modified, and in this review, we summarized the progress made in hydrophobic modification methods. Additionally, the typical materials used for hydrophobic modification of NAs in recent years were reviewed, and then, we discussed the fabrication of nanocellulose composite aerogels (NCAs) with different properties for use in oil/water separation. Moreover, the additional desirable properties of NAs used in oil/water separation processes are systematically discussed according to the different separation requirements, and the conclusions regarding the relationship between the oil adsorption capacity and different NA parameters are summarized. Finally, the outlook for and challenges faced in the construction of efficient NAs for oil/water separation were put forward.


Assuntos
Celulose , Polímeros , Celulose/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Géis/química
13.
Sci Total Environ ; 856(Pt 2): 159271, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209877

RESUMO

To date, most existing engineering materials have difficulty simultaneously separating oil/water and removing heavy metals from complex oily wastewater. In response to this challenge, a novel multifunctional composite hydrogel membrane (named PVA-CS-LDHs) was fabricated by incorporating chitosan (CS) and nanohydrotalcite (LDHs) into a polyvinyl alcohol (PVA) hydrogel. This material was developed using an easy yet versatile strategy of freezing and salting-out, which can enable the formation of a PVA-CS-LDH hydrogel membrane in one step and endow the PVA-CS-LDHs with high strength, excellent stretchability, favourable shape recoverability, and an ideal 3D microstructure. The PVA-CS-LDH membrane can purify emulsified oil and metal ions simultaneously with a separation efficiency of 99.89 % for emulsified oil and a removal efficiency of 97.44 % for Pb2+ ions. Additionally, the high-efficiency, multifunctional, high-antifouling and eco-friendly properties of the PVA-CS-LDH membrane make it a promising hydrogel material for both emulsified oil separation and heavy metal ion removal. Thus, this material provides critical application potential that can address scientific and technological challenges in complex oily wastewater purification.


Assuntos
Quitosana , Metais Pesados , Águas Residuárias/química , Álcool de Polivinil/química , Chumbo , Adsorção , Quitosana/química , Íons , Hidrogéis/química
14.
Ecotoxicol Environ Saf ; 248: 114312, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455352

RESUMO

Chromium (Cr) is a harmful heavy metal that poses a serious threat to plants and animals. Selenium (Se) and molybdenum (Mo) are two beneficial elements for plant growth and resistance. However, their interactive effects on Cr uptake and distribution are poorly understood. Therefore, a hydroponics experiment was conducted to explore the effects of the use of Se and Mo alone and simultaneously on mitigating Cr toxicity. In this study, Nicotiana tabacum L. seedlings were exposed to control, 50 µM Cr, 50 µM Cr + 2 µM Se, 50 µM Cr + 1 µM Mo, or 50 µM Cr + 2 µM Se + 1 µM Mo in Hoagland solution. After 2 weeks, the plant biomass, Cr, Se and Mo contents, photosynthesis, leaf ultrastructure, antioxidant system, subcellular distribution and associated gene expression in Nicotiana tabacum L. were determined. The results showed that simultaneous use of Se and Mo promoted tobacco growth under Cr stress, as evidenced by reducing reactive oxygen species (ROS) content and reducing Cr translocation factor (TF) and inducing a 51.3% reduction in Cr content in shoots. Additionally, Se-Mo interactions increased the levels of glutathione (GSH) and phytochelatin (PC) and the distribution of Cr in the cell walls and organelles. Furthermore, the relative expression of PCS1 was upregulated, while those of NtST1 and MSN1 were downregulated. The results concluded that the simultaneous use of Se and Mo effectively alleviated Cr toxicity in Nicotiana tabacum L., which not only offers an efficient way for crops to resist Cr toxicity but also provides evidence for the benefit of Se combined with Mo.


Assuntos
Selênio , Animais , Selênio/farmacologia , Molibdênio/farmacologia , Nicotiana , Cromo/toxicidade , Transporte Biológico , Glutationa
15.
Plants (Basel) ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365317

RESUMO

Culm sheaths play an important role in supporting and protecting bamboo shoots during the growth and development period. The physiological and molecular functions of bamboo sheaths during the growth of bamboo shoots remain unclear. In this study, we investigated the morphological anatomy of culm sheaths, photosynthesis in sheath blades, storage and distribution of sugars, and the transcriptome of the sheath. Respiration in the base of the culm sheath was higher than that in the sheath blades; chloroplasts matured with the development of the sheath blades, the fluorescence efficiency Fv/Fm value increased from 0.3 to 0.82; and sucrose and hexose accumulated in the sheath blade and the culm sheath. The sucrose, glucose, and fructose contents of the middle sheath blades were 10.66, 5.73, and 8.84 mg/g FW, respectively. Starches accumulated in parenchymal cells close to vascular bundles. Genes related to the plant hormone signaling pathway and sugar catabolism were highly expressed in the culm sheath base. These findings provide a research basis for further understanding the possible role of bamboo sheaths in the growth and development of bamboo shoots.

16.
Foods ; 11(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36010438

RESUMO

The number of people with type 2 diabetes mellitus (T2DM) has increased sharply over the past decades. Apart from genetic predisposition, which may cause some of the diagnosed cases, an unhealthy diet and lifestyle are incentive triggers of this global epidemic. Consumption of probiotics and prebiotics to gain health benefits has become increasingly accepted by the public in recent years, and their critical roles in alleviating T2DM symptoms are confirmed by accumulating studies. Microbiome research reveals gut colonization by probiotics and their impacts on the host, while oral intake of prebiotics may stimulate existing metabolisms in the colon. The use of synbiotics (a combination of prebiotics and probiotics) can thus show a synergistic effect on T2DM through modulating the gastrointestinal microenvironment. This review summarizes the research progress in the treatment of T2DM from the perspective of synbiotics and gut microbiota and provides a class of synbiotics which are composed of lactulose, arabinose, and Lactobacillus plantarum, and can effectively adjust the blood glucose, blood lipid, and body weight of T2DM patients to ideal levels.

17.
Mol Biol Rep ; 49(9): 8815-8825, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35867290

RESUMO

BACKGROUND: As a ubiquitous acid-regulating protein family in eukaryotes, general regulatory factors (GRFs) are active in various life activities of plants. However, detailed investigations of the GRFs gene family in moso bamboo are scarce. METHODS AND RESULTS: Genome-wide characteristics of the GRF gene family in moso bamboo were analyzed using the moso bamboo genome. GRF phylogeny, gene structure, conserved domains, cis-element promoters, and gene expression were systematically analyzed. A total of 20 GRF gene family members were identified in the moso bamboo genome. These genes were divided into ε and non-ε groups. qRT-PCR (real-time quantitative reverse transcription polymerase chain reaction) showed that PheGRF genes responded to auxin and gibberellin treatment. To further study PheGRF gene functions, a yeast two-hybrid experiment was performed and verified by a bimolecular fluorescence complementation experiment. The results showed that PheGRF4e could interact with PheIAA30 (auxin/indole-3-acetic acid, an Aux/IAA family gene), and both were found to act mainly on the root tip meristem and vascular bundle cells of developing shoots by in situ hybridization assay. CONCLUSIONS: This study revealed that PheGRF genes were involved in hormone response during moso bamboo shoot development, and the possible regulatory functions of PheGRF genes were enriched by the fact that PheGRF4e initiated auxin signaling by binding to PheIAA30.


Assuntos
Regulação da Expressão Gênica de Plantas , Poaceae , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Filogenia , Poaceae/metabolismo
18.
Chemosphere ; 305: 135412, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35724714

RESUMO

Ammonium (NH4+) oxidation is a key step in nitrogen transformation in ecosystems. Prior to the recent discovery of Feammox (anaerobic NH4+ oxidation coupled with iron reduction), anammox (anaerobic NH4+ oxidation coupled with nitrite reduction) was thought of as the only pathway by which anaerobic NH4+ loss (NH4+ directly to N2) occurs in soils. Experimental evidence has confirmed that both anammox and Feammox contribute to anaerobic NH4+ loss; however, their relative contributions to this process in farmland soils are largely unknown. Therefore, in this study, we examined the seasonal activities of anammox and Feammox in conventional tillage (CT) and no-tillage (NT) soils around Lake Taihu, China. Isotopic tracing experiments showed higher anammox and Feammox rates in summer than in other seasons, and the contribution of Feammox to anaerobic NH4+ loss from the farmland soils (54.6%-69.3%) was higher than that of anammox. Further, the Feammox rates corresponding to the two soil tillage practices were significantly different, whereas their corresponding anammox rates showed no significant differences. Furthermore, molecular analysis showed that the abundance of Geobacteraceae differed significantly with season and tillage practice, whereas the abundance of anammox bacteria showed no significant differences between CT and NT practices. Structural equation modeling also revealed that the anammox rate was directly or indirectly driven by N availability and season, whereas the Feammox rate was driven by soil moisture content, Fe(III) concentration, Fe(III) reduction rates, tillage practice, and season. Overall, this study enhances understanding regarding anaerobic NH4+ oxidation in farmland soils and highlight the importance of Feammox in NH4+ loss in such an ecosystem.


Assuntos
Compostos de Amônio , Compostos de Amônio/química , Oxidação Anaeróbia da Amônia , Anaerobiose , China , Ecossistema , Fazendas , Compostos Férricos/química , Lagos , Nitrogênio/análise , Oxirredução , Solo/química
19.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684303

RESUMO

The iridoid compounds in traditional Chinese medicine play a prominent role in their antiviral effects. We previously reported the anti-inflammatory effect of new iridoids from the aerial parts of Morinda officinalis. Nevertheless, several open questions remain to explore the other biological functions of these new iridoid compounds. Herpes simplex virus-1 (HSV-1) is one of the most prevalent pathogens in human beings worldwide and due to limited therapies, mainly with the guanosine analog aciclovir (ACV) and other analogs, the search for new drugs with different modes of action and low toxicity becomes particularly urgent for public health. This study aimed to explore the anti-HSV-1 effects of iridoids from the aerial parts of Morinda officinalis. The dried aerial parts of Morinda officinalis were extracted with 95% ethanol and systematic separation and purification were then carried out by modern column chromatography methods such as silica gel column, RP-ODS column, Sephadex LH-20 gel column, and semi-preparative liquid phase, and the structure of these compounds were identified through the physical and chemical properties and a variety of spectral techniques. The obtained seven new iridoid compounds were screened for antiviral activity on HSV-1 through CCK8 and the cytopathic effect, and then the plaque reduction assay, the anti-fluorescence reporter virus strain replication, and RT-qPCR experiments were carried out to further evaluate the antiviral effect. Seven new iridoid compounds (officinaloside A-G) were identified from the aerial parts of Morinda officinalis, and officinaloside C showed anti-HSV-1 activity. Further functional experiments confirmed that officinaloside C has a significant inhibiting effect on HSV-1 virus plaque formation, viral gene, and protein expression, and fluorescent virus replication. Our findings suggest that officinaloside C has significant inhibitory effects on viral plaque formation, genome replication, and viral protein expression of HSV-1 which implies that officinaloside C exhibits viral activity and may be a promising treatment for HSV-1 infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Chlorocebus aethiops , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 2 , Humanos , Iridoides/farmacologia , Iridoides/uso terapêutico , Células Vero , Replicação Viral
20.
Front Plant Sci ; 13: 858686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592571

RESUMO

Auxin plays a crucial regulatory role in higher plants, but systematic studies on the location of auxin local biosynthesis are rare in bamboo and other graminaceous plants. We studied moso bamboo (Phyllostachys edulis), which can grow up to 1 m/day and serves as a reference species for bamboo and other fast-growing species. We selected young tissues such as root tips, shoot tips, young culm sheaths, sheath blades, and internode divisions for local auxin biosynthesis site analysis. IAA immunofluorescence localization revealed that auxin was similarly distributed in different stages of 50-cm and 300-cm bamboo shoots. Shoot tips had the highest auxin content, and it may be the main site of auxin biosynthesis in the early stage of rapid growth. A total of 22 key genes in the YUCCA family for auxin biosynthesis were identified by genome-wide identification, and these had obvious tissue-specific and spatio-temporal expression patterns. In situ hybridization analysis revealed that the localization of YUCCA genes was highly consistent with the distribution of auxin. Six major auxin synthesis genes, PheYUC3-1, PheYUC6-1, PheYUC6-3, PheYUC9-1, PheYUC9-2, and PheYUC7-3, were obtained that may have regulatory roles in auxin accumulation during moso bamboo growth. Culm sheaths were found to serve as the main local sites of auxin biosynthesis and the auxin required for internode elongation may be achieved mainly by auxin transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...