Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39272324

RESUMO

The giant freshwater prawn (GFP; Macrobrachium rosenbergii), a tropical species cultured worldwide, has high market demand and economic value. Male GFP growth varies considerably; however, the mechanisms underlying these growth differences remain unclear. In this study, we collected gut and hemolymphatic samples of large (ML), medium (MM), and small (MS) male GFPs and used the 16S rRNA sequencing and liquid chromatography-mass spectrometry-based metabolomic methods to explore gut microbiota and metabolites associated with GFP growth. The dominant bacteria were Firmicutes and Proteobacteria; higher growth rates correlated with a higher Firmicutes/Bacteroides ratio. Serum metabolite levels significantly differed between the ML and MS groups. We also combined transcriptomics with integrative multiomic techniques to further elucidate systematic molecular mechanisms in the GFPs. The results revealed that Faecalibacterium and Roseburia may improve gut health in GFP through butyrate release, affecting physiological homeostasis and leading to metabolic variations related to GFP growth differences. Notably, our results provide novel, fundamental insights into the molecular networks connecting various genes, metabolites, microbes, and phenotypes in GFPs, facilitating the elucidation of differential growth mechanisms in GFPs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39068906

RESUMO

The olfactory gene families include odorant binding proteins (OBPs), chemosensory proteins (CSPs), olfactory receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). To investigate the molecular function of olfactory perception in Macrobrachium rosenbergii, we integrated the full-length transcripts and whole-genome sequences to identify the olfactory gene families. In this study, a total of 38,955 full-length transcripts with an N50 length of 3383 bp were obtained through PacBio SMRT sequencing. Through the annotation of full-length transcripts and whole-genome sequences, several olfactory gene families were identified, including 18 MrORs, 16 MrIRs, 151 MrIGluRs (ionotropic glutamate receptors), 2 MrVIGluRs (variant ionotropic glutamate receptors) and 3 MrCRs (chemosensory receptors). Notably, the CRs were first identified in prawns and shrimps. Additionally, the olfactory gene families in M. nipponense were identified, comprising 4 MnORs, 21 MnIRs, 79 MnIGluRs, 5 MnVIGluRs, 1 MnGR and 1 MnOBP, using the available whole-genome sequences. Meanwhile, the external morphology of the chemical sensory organs of M. rosenbergii was explored, and the presence of plumose setae (PS), hard thorn setae (HTS), bamboo shoot setae (BSS), soft thorn setae (STS) and aesthetascs (AE) on the antennules, HTS and BSS on the second antennae, and PS on the pereiopods were observed by scanning electron microscope. This study provides valuable insights for future functional studies into the olfactory perception of crustaceans and establishes a theoretical basis for molecular design breeding in M. rosenbergii.

3.
Int J Biol Macromol ; 178: 492-503, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647335

RESUMO

Myeloid differentiation factor 88 (MyD88) is a crucial adaptor protein for Toll-like receptor (TLR)-mediated signaling pathways and plays an important role in immune response. In this study, the full-length cDNA of MyD88 from Macrobrachium rosenbergii (MRMyD88) was cloned. The MRMyD88 cDNA is 1758 bp long and contains a 1398-bp open reading frame. Multiple sequence alignment and phylogenetic analysis revealed that the amino acid sequence of MRMyD88 shared high identity with the known MyD88 proteins. The MRMyD88 mRNA was widely expressed in all examined tissues, with highest level in intestine, followed by gonad and pleopod. Furthermore, the MRMyD88 promoter region, spanning 1622 bp, contains several transcription factor-binding sites, including nine GATA-1 box motifs. Electrophoretic mobility shift assay showed that Gfi-1, SRF, and Oct-1 bind to the upstream region of MRMyD88. Additionally, the results showed that the expression levels of TLR1, TLR2 and TLR3 were different in response to Vibrio anguillarum, Lactobacillus plantarum and Aeromonas hydrophila infections. However, these bacteria significantly increased the expression levels of MyD88 and prophenoloxidase. These data suggest that the TLR-mediated signaling pathway is MyD88-dependent in response to pathogenic and probiotic bacteria in M. rosenbergii.


Assuntos
Proteínas de Artrópodes , Fator 88 de Diferenciação Mieloide , Palaemonidae , Vibrioses , Vibrio/imunologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Palaemonidae/genética , Palaemonidae/imunologia , Palaemonidae/microbiologia , Vibrioses/genética , Vibrioses/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA