Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522272

RESUMO

The widespread deployment of residential distributed photovoltaic (RDPV) remains complex and challenging due to photovoltaic output intermittency, fluctuating electricity demand, and rising electric vehicle (EV) adoption. Simultaneously, the energy storage capabilities of EVs and residential demand response (DR) offer solutions for optimizing RDPV applications. This study proposes an integrated RDPV capacity planning model by encompassing EV charging, vehicle-to-home, and flexible load DR. Five scenarios are established to reveal the impact of various factors on the optimal photovoltaic installation capacity, electricity cost, self-consumption and self-sufficiency rate. A case study of three typical residential electricity demand patterns indicates that DR and vehicle-to-home significantly reduce the optimal photovoltaic installation capacity and total electricity cost. When the feed-in tariff during photovoltaic generation periods is higher than the off-peak pricing, DR results in a reduction in photovoltaic self-sufficiency rate and an increase in photovoltaic self-consumption rate. EV charging and vehicle-to-home have minimal impact on photovoltaic self-consumption rate, while EV charging significantly decreases self-sufficiency rate and vehicle-to-home exacerbates this effect.


Assuntos
Eletricidade , Custos e Análise de Custo
2.
Nat Commun ; 14(1): 5331, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658077

RESUMO

The ideal mechanical properties and behaviors of materials without the influence of defects are of great fundamental and engineering significance but considered inaccessible. Here, we use single-atom-thin isotopically pure hexagonal boron nitride (hBN) to demonstrate that two-dimensional (2D) materials offer us close-to ideal experimental platforms to study intrinsic mechanical phenomena. The highly delicate isotope effect on the mechanical properties of monolayer hBN is directly measured by indentation: lighter 10B gives rise to higher elasticity and strength than heavier 11B. This anomalous isotope effect establishes that the intrinsic mechanical properties without the effect of defects could be measured, and the so-called ultrafine and normally neglected isotopic perturbation in nuclear charge distribution sometimes plays a more critical role than the isotopic mass effect in the mechanical and other physical properties of materials.

3.
ACS Appl Mater Interfaces ; 14(47): 52993-53006, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36378571

RESUMO

Interfacial issues and dendritic Li deposition in lithium metal batteries (LMBs) hamper the practical application of liquid or solid-state cells. Here, a hybrid solid electrolyte interphase (SEI), based on hydroxyl-functionalized boron nitride (BN) nanosheets and poly(vinyl alcohol), is designed to solve the unstable nature of the Li anode-electrolyte interface. Rather than acquiring a rich Li halide environment through intense electrolyte decomposition, the hybrid SEI effectively regulates electrolyte decomposition and guarantees uniform Li plating via boosting interfacial Li+ ion transport at the interface. The Li+ ion boosting kinetics were deeply analyzed using simulations and spectroscopic analysis. It is revealed that the hydroxyl-functionalized BN can decrease kinetic energy barriers for Li+ ions and strongly holds TFSI- ions, thereby ensuring faster Li+ ion migration between electrodes and electrolytes. Tailoring the interfacial Li+ ion dynamics with hybrid SEI renders the Li transference number enhancement from 0.391 to 0.562 and 0.178 to 0.327 in liquid and solid-state cells, respectively. Moreover, Li symmetric cells with hybrid SEI exhibit an ultrahigh stability over 3500 h at 2 mA cm-2 with 2 mA h cm-2, along with the improved solid-state LMB performances. Our results suggest increasing Li+ ion transport at the interface is an alternative to resolve Li anode issues.

4.
Nanotechnology ; 33(22)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35172285

RESUMO

Hydrogen is ideal for producing carbon-free and clean-green energy with which to save the world from climate change. Proton exchange membrane fuel cells use to hydrogen to produce 100% clean energy, with water the only by-product. Apart from generating electricity, hydrogen plays a crucial role in hydrogen-powered vehicles. Unfortunately, the practical uses of hydrogen energy face many technical and safety barriers. Research into hydrogen generation and storage and reversibility transportation are still in its very early stages. Ammonia (NH3) has several attractive attributes, with a high gravimetric hydrogen density of 17.8 wt% and theoretical hydrogen conversion efficiency of 89.3%. Ammonia storage and transport are well-established technologies, making the decomposition of ammonia to hydrogen the safest and most carbon-free option for using hydrogen in various real-time applications. However, several key challenges must be addressed to ensure its feasibility. Current ammonia decomposition technologies require high temperatures, pressures and non-recyclable catalysts, and a sustainable decomposition mechanism is urgently needed. This review article comprehensively summarises current knowledge about and challenges facing solid-state storage of ammonia and decomposition. It provides potential strategic solutions for developing a scalable process with which to produce clean hydrogen by eliminating possible economic and technical barriers.

5.
ACS Appl Mater Interfaces ; 13(37): 44751-44759, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34514793

RESUMO

There is an increasing demand for boron nitride nanosheets (BNNSs) for a range of applications such as advanced composite materials, ion/gas selective membranes, and energy storage. These applications require stable, high-concentration BNNS dispersions as a precursor, which is a challenge because BNNSs do not disperse easily. We report a simple, yet efficient, mechanochemical exfoliation technique to prepare functionalized BNNSs with excellent dispersibility in water and organic solvents. The resultant amino-modified BNNSs (BNNS-NH2) are stable in ethanol for 3 months at an unprecedented high concentration of 46 ± 2 mg/mL. We provide insights into the dispersibility mechanism for amino- and hydroxyl-functionalized BNNSs. High-concentration BNNS dispersions enable a facile painting method that can coat a uniform, insulating, and antioxidant BNNS layer on arbitrary surfaces. In addition, different functional groups enhance the selectivity of different ions of the functionalized BNNS membranes for water purification and other ion separation applications. These stable, high-concentration BNNS dispersions make many exciting applications possible.

6.
Phys Rev Lett ; 125(8): 085902, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909783

RESUMO

Materials with high thermal conductivities (κ) are valuable to solve the challenge of waste heat dissipation in highly integrated and miniaturized modern devices. Herein, we report the first synthesis of atomically thin isotopically pure hexagonal boron nitride (BN) and its one of the highest κ among all semiconductors and electric insulators. Single atomic layer (1L) BN enriched with ^{11}B has a κ up to 1009 W/mK at room temperature. We find that the isotope engineering mainly suppresses the out-of-plane optical (ZO) phonon scatterings in BN, which subsequently reduces acoustic-optical scatterings between ZO and transverse acoustic (TA) and longitudinal acoustic phonons. On the other hand, reducing the thickness to a single atomic layer diminishes the interlayer interactions and hence umklapp scatterings of the out-of-plane acoustic (ZA) phonons, though this thickness-induced κ enhancement is not as dramatic as that in naturally occurring BN. With many of its unique properties, atomically thin monoisotopic BN is promising on heat management in van der Waals devices and future flexible electronics. The isotope engineering of atomically thin BN may also open up other appealing applications and opportunities in 2D materials yet to be explored.

7.
ACS Appl Mater Interfaces ; 12(19): 21985-21991, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32319287

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a precise and noninvasive analytical technique that is widely used in chemical analysis, environmental protection, food processing, pharmaceutics, and diagnostic biology. However, it is still a challenge to produce highly sensitive and reusable SERS substrates with a minimum fluorescence background. In this work, we propose the use of van der Waals heterostructures of two-dimensional materials to cover plasmonic metal nanoparticles to solve this challenge. The heterostructures of atomically thin boron nitride (BN) and graphene provide synergistic effects: (1) electrons could tunnel through the atomically thin BN, allowing the charge transfer between graphene and probe molecules to suppress the fluorescence background; (2) the SERS sensitivity is enhanced by graphene via a chemical enhancement mechanism in addition to an electromagnetic field mechanism; and (3) the atomically thin BN protects the underlying graphene and Ag nanoparticles from oxidation during heating for regeneration at 360 °C in the air so that the SERS substrates could be reused. These advances will facilitate wider applications of SERS especially on the detection of fluorescent molecules with higher sensitivity.

8.
ACS Appl Mater Interfaces ; 12(17): 19866-19873, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32267669

RESUMO

Confining light in extremely small cavities is crucial in nanophotonics, central to many applications. Employing a unique nanoparticle-on-mirror plasmonic structure and using a graphene film as a spacer, we create nanoscale cavities with volumes of only a few tens of cubic nanometers. The ultracompact cavity produces extremely strong optical near-fields, which facilitate the formation of single carbon quantum dots in the cavity and simultaneously empower the strong coupling between the excitons of the formed carbon quantum dot and the localized surface plasmons. This is manifested in the optical scattering spectra, showing a magnificent Rabi splitting of up to 200 meV under ambient conditions. In addition, we demonstrate that the strong coupling is tuneable with light irradiation. This opens new paradigms for investigating the fundamental light emission properties of carbon quantum dots in the quantum regime and paves the way for many significant applications.

9.
ACS Nano ; 13(10): 12184-12191, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31577417

RESUMO

Metal-enhanced fluorescence (MEF) considerably enhances the luminescence for various applications, but its performance largely depends on the dielectric spacer between the fluorophore and plasmonic system. It is still challenging to produce a defect-free spacer having an optimized thickness with a sub-nanometer accuracy that enables reusability without affecting the enhancement. In this study, we demonstrate the use of atomically thin hexagonal boron nitride (BN) as an ideal MEF spacer owing to its multifold advantages over the traditional dielectric thin films. With rhodamine 6G as a representative fluorophore, it largely improves the enhancement factor (up to ∼95 ± 5), sensitivity (10-8 M), reproducibility, and reusability (∼90% of the plasmonic activity is retained after 30 cycles of heating at 350 °C in air) of MEF. This can be attributed to its two-dimensional structure, thickness control at the atomic level, defect-free quality, high affinities to aromatic fluorophores, good thermal stability, and excellent impermeability. The atomically thin BN spacers could increase the use of MEF in different fields and industries.

10.
ACS Nano ; 13(7): 7402-7409, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31203604

RESUMO

Boron nitride nanotubes (BNNTs), structural analogues of carbon nanotubes, have attracted significant attention due to their superb thermal conductivity, wide bandgap, excellent hydrogen storage capacity, and thermal and chemical stability. Despite considerable progress in the preparation and surface functionalization of BNNTs, it remains a challenge to assemble one-dimensional BNNTs into three-dimensional (3D) architectures (such as aerogels) for practical applications. Here, we report a highly compressive BNNT aerogel reinforced with reduced graphene oxide (rGO) fabricated using a freeze-drying method. The reinforcement effect of rGO and 3D honeycomb-like framework offer the BNNTs/rGO aerogel with a high compression resilience. The BNNTs/rGO aerogels were then infiltrated with polyethylene glycol to prepare a kind of phase change materials. The prepared phase change material composites show zero leakage even at 100 °C and enhanced thermal conductivity, due to the 3D porous structure of the BNNTs/rGO aerogel. This work provides a simple method for the preparation of 3D BNNTs/rGO aerogels for many potential applications, such as high-performance polymer composites.

11.
Sci Adv ; 5(6): eaav0129, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31187056

RESUMO

Heat management has become more and more critical, especially in miniaturized modern devices, so the exploration of highly thermally conductive materials with electrical insulation is of great importance. Here, we report that high-quality one-atom-thin hexagonal boron nitride (BN) has a thermal conductivity (κ) of 751 W/mK at room temperature, the second largest κ per unit weight among all semiconductors and insulators. The κ of atomically thin BN decreases with increased thickness. Our molecular dynamic simulations accurately reproduce this trend, and the density functional theory (DFT) calculations reveal the main scattering mechanism. The thermal expansion coefficients of monolayer to trilayer BN at 300 to 400 K are also experimentally measured for the first time. Owing to its wide bandgap, high thermal conductivity, outstanding strength, good flexibility, and excellent thermal and chemical stability, atomically thin BN is a strong candidate for heat dissipation applications, especially in the next generation of flexible electronic devices.

12.
Nanoscale Adv ; 1(9): 3686-3692, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133558

RESUMO

Oxygen evolution reaction (OER) catalysts are of importance for electrochemical water splitting and fuel generation. Despite enormous efforts, the design and development of OER catalysts with high catalytic activities under neutral conditions are highly desired but still remain a great challenge. Herein, we report a room temperature chemical route to prepare xceria/cobalt borate (xCeO2/Co-Bi) hybrids as efficient OER catalysts by tuning the molar ratio of Ce/Co (x represents the amount of CeO2). The optimised catalyst (20CeO2/Co-Bi hybrid) was found to exhibit remarkable OER catalytic activity with an overpotential of 453 mV at a current density of 10 mA cm-2, Tafel slope of 120 mV dec-1 and long-term stability in neutral medium due to its good conductivity, mass transportation and strong synergetic coupling effects, showing the potential of Co-based electrochemical materials for practical application in energy storage devices.

13.
ACS Appl Mater Interfaces ; 10(26): 22520-22528, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29812895

RESUMO

The thickness of graphene films can be accurately determined by optical contrast spectroscopy. However, this becomes challenging and complicated when the flake size reduces to the micrometer scale, where the contrast spectrum is sensitively dependent on the polarization and incident angle of light. Here, we report accurate measurement of the optical contrast spectra of micrometer-sized few-layer graphene flakes on Au substrate. Using a high-resolution optical microscopy with a 100× magnification objective, we accurately determined the layer numbers of flakes as small as one micrometer in lateral size. We developed a theoretical model to accurately take into account the appropriate contribution of light incident at various angles and polarizations, which matched the experimental results extremely well. Furthermore, we demonstrate that the optical contrast spectroscopy is highly sensitive to detect the adsorption of submonolayer airborne hydrocarbon molecules, which can reveal whether graphene is contaminated. Though the technique was demonstrated on graphene, it can be readily generalized to many other two-dimensional materials, which opens new avenues for developing miniaturized and ultrasensitive label-free molecular sensors.

14.
Nat Commun ; 9(1): 1271, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593279

RESUMO

A long-standing challenge facing the combination of two-dimensional crystals into heterojunction is the unknown effect of mixing layer of different electronic properties (semiconductors, metals, insulators) on the screening features of the fabricated device platforms including their functionality. Here we use a compelling set of theoretical and experimental techniques to elucidate the intrinsic dielectric screening properties of heterostructures formed by MoS2 and graphene layers. We experimentally observed an asymmetric field screening effect relative to the polarization of the applied gate bias into the surface. Surprisingly, such behavior allows selection of the electronic states that screen external fields, and it can be enhanced with increasing of the number of layers of the semiconducting MoS2 rather than the semi-metal. This work not only provides unique insights on the screening properties of a vast amount of heterojunction fabricated so far, but also uncovers the great potential of controlling a fundamental property for device applications.

15.
Nat Commun ; 8: 15815, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28639613

RESUMO

Atomically thin boron nitride (BN) nanosheets are important two-dimensional nanomaterials with many unique properties distinct from those of graphene, but investigation into their mechanical properties remains incomplete. Here we report that high-quality single-crystalline mono- and few-layer BN nanosheets are one of the strongest electrically insulating materials. More intriguingly, few-layer BN shows mechanical behaviours quite different from those of few-layer graphene under indentation. In striking contrast to graphene, whose strength decreases by more than 30% when the number of layers increases from 1 to 8, the mechanical strength of BN nanosheets is not sensitive to increasing thickness. We attribute this difference to the distinct interlayer interactions and hence sliding tendencies in these two materials under indentation. The significantly better interlayer integrity of BN nanosheets makes them a more attractive candidate than graphene for several applications, for example, as mechanical reinforcements.

16.
Nanoscale ; 9(20): 6886-6894, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28498384

RESUMO

The oxygen evolution reaction (OER) has been viewed as a critical step in electrochemical energy conversion and storage devices. However, searching for cheap and efficient OER electrocatalysts still remains an urgent task. Herein, we develop a new strategy involving a one-step electrochemical deposition and dissolution method to fabricate hydrophilic porous CoS2/carbon nanotube (CNT) composites (CNT-CoS2). X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy measurements confirm the formation of hydrophilic groups on the surface of the porous CoS2 during electrochemical oxidation. Our design holds several advantages. The electricity conductivity of CoS2 is increased by introducing CNTs as a conductive substrate. The porous nanostructures of CoS2 increase its surface area, and provide paths to promote charge and reactant transfer. The active edge sites modified with hydrophilic groups can increase the content of electrolyte-electrode contact points, increasing the intrinsic catalytic performance of CoS2. These factors allow CNT-CoS2 to achieve a low onset potential of 1.33 V vs. RHE, a stable current density (j) of 10 mA cm-2 at an overpotential of 290 mV, and excellent stability under alkaline conditions compared to that of IrO2. The comprehensive performance of the CNT-CoS2 electrocatalyst is comparable to or better than that of any reported noble metal-free OER catalyst, even RuO2 and IrO2. This facile synthesis strategy involving synchronous electrochemical deposition and dissolution should be easily adapted for large-scale water electrolysis.

17.
Nanoscale ; 9(9): 3059-3067, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191567

RESUMO

Raman spectroscopy has become an essential technique to characterize and investigate graphene and many other two-dimensional materials. However, there is still a lack of consensus on the Raman signature and phonon dispersion of atomically thin boron nitride (BN), which has many unique properties distinct from graphene. Such a knowledge gap greatly affects the understanding of the basic physical and chemical properties of atomically thin BN as well as the use of Raman spectroscopy to study these nanomaterials. Here, we use both experiment and simulation to reveal the intrinsic Raman signature of monolayer and few-layer BN. We find experimentally that atomically thin BN without interaction with a substrate has a G band frequency similar to that of bulk hexagonal BN (hBN), but strain induced by the substrate can cause a pronounced Raman shift. This is in excellent agreement with our first-principles density functional theory (DFT) calculations at two levels of theory, including van der Waals dispersion forces (opt-vdW) and a fraction of the exact exchange from Hartree-Fock (HF) theory through the hybrid HSE06 functional. Both calculations demonstrate that the intrinsic E2g mode of BN does not depend sensibly on the number of layers. Our simulations also suggest the importance of the exact exchange mixing parameter in calculating the vibrational modes in BN, as it determines the fraction of HF exchange included in the DFT calculations.

18.
J Am Chem Soc ; 139(9): 3336-3339, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28221033

RESUMO

Organometallic complexes with metal-nitrogen/carbon (M-N/C) coordination are the most important alternatives to precious metal catalysts for oxygen reduction and evolution reactions (ORR and OER) in energy conversion devices. Here, we designed and developed a range of molecule-level graphitic carbon nitride (g-C3N4) coordinated transition metals (M-C3N4) as a new generation of M-N/C catalysts for these oxygen electrode reactions. As a proof-of-concept example, we conducted theoretical evaluation and experimental validation on a cobalt-C3N4 catalyst with a desired molecular configuration, which possesses comparable electrocatalytic activity to that of precious metal benchmarks for the ORR and OER in alkaline media. The correlation of experimental and computational results confirms that this high activity originates from the precise M-N2 coordination in the g-C3N4 matrix. Moreover, the reversible ORR/OER activity trend for a wide variety of M-C3N4 complexes has been constructed to provide guidance for the molecular design of this promising class of catalysts.

19.
Nanoscale ; 8(36): 16182-6, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27603125

RESUMO

Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material with unique optical properties that make it attractive for two dimensional (2D) photonic and optoelectronic devices. However, broad deployment and exploitation of hBN is limited by alack of suitable material and device processing and nano prototyping techniques. Here we present a high resolution, single step electron beam technique for chemical dry etching of hBN. Etching is achieved using H2O as a precursor gas, at both room temperature and elevated hBN temperatures. The technique enables damage-free, nano scale, iterative patterning of supported and suspended 2D hBN, thus opening the door to facile fabrication of hBN-based 2D heterostructures and devices.

20.
ACS Appl Mater Interfaces ; 8(24): 15630-6, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27254250

RESUMO

Atomically thin boron nitride (BN) nanosheets have many properties desirable for surface-enhanced Raman spectroscopy (SERS). BN nanosheets have a strong surface adsorption capability toward airborne hydrocarbon and aromatic molecules. For maximized adsorption area and hence SERS sensitivity, atomically thin BN nanosheet-covered gold nanoparticles have been prepared for the first time. When placed on top of metal nanoparticles, atomically thin BN nanosheets closely follow their contours so that the plasmonic hot spots are retained. Electrically insulating BN nanosheets also act as a barrier layer to eliminate metal-induced disturbances in SERS. Moreover, the SERS substrates veiled by BN nanosheets show an outstanding reusability in the long term. As a result, the sensitivity, reproducibility, and reusability of SERS substrates can be greatly improved. We also demonstrate that large BN nanosheets produced by chemical vapor deposition can be used to scale up the proposed SERS substrate for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...