Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 18(5)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467763

RESUMO

Non-specific biofilm formation (biofouling) commonly occurs to the surface of biomedical devices, which causes infection to the human tissues and function loss after implantation. To enhance the antifouling properties on the bioinert hydrogel-based biomaterials, a novel surface grafting approach was developed using surface radical chain-transfer reaction mediated by DL-dithiothreitol (DTT), rather than catalyzed by cytotoxic metal ions. Zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) brushes were grafted on the surface of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (PHG) to obtain PHG-graft-PMPC (PHG-g-PMPC) hydrogel, which were shown to have tunable surface hydrophilicity while maintaining high water content and transparency. Elemental composition analysis and micromorphology demonstrated the success of surface grafting. Protein adhesion assays were carried out, showing the reduction of bovine serum albumin, lactoferrin, and lysozyme adhesion by ∼90%, 80%, and 70%, respectively, compared to the pristine hydrogels. Significant resistance of bacterial attachment was observed on the surface-modified hydrogels using gram-negativeEscherichia. coliand gram-positiveStaphylococcus aureus, respectively. The PHG-g-PMPC hydrogel is potentially feasible in various biomedical applications, especially for preventing surface biofouling of ophthalmic implants and devices. Furthermore, this de novo approach provides a universal platform for surface functionalization via thiol-epoxy click chemistry and surface radical chain-transfer reaction.


Assuntos
Incrustação Biológica , Humanos , Incrustação Biológica/prevenção & controle , Hidrogéis/química , Propriedades de Superfície , Materiais Biocompatíveis/química , Interações Hidrofóbicas e Hidrofílicas
2.
Water Sci Technol ; 83(2): 463-474, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33504708

RESUMO

Lots of highly concentrated saline organic wastewater is produced during the pymetrozine production process, causing environmental pollution and waste of resources if discharged directly. Research on actual pymetrozine wastewater treatment is quite scarce. Existing treatment methods of pesticide wastewater usually have disadvantages of long treatment time, low processing efficiency and low recovery rate. To solve these problems, a pretreatment process for pymetrozine wastewater was studied based on material recovery and pollutant degradation. The ammonia conversion process was experimentally investigated by reactive distillation. The reaction product vapor was neutralized and then separated by side-stream distillation. Aspen Plus and response surface methodology were employed to simulate and optimize the operating conditions. Box-Behnken design was used to investigate the individual and interaction effects on methanol purification and sodium acetate removal. Experimental study was carried out on the basis of theoretical simulation data. The result showed that the optimized methanol content on tower top was 99.28% with a yield of 99.95% and methanol content of side withdrawal was 0.01%. The process can be applied for pesticide wastewater treatment to recycle high purity chemical materials, and meets the national sewage comprehensive emission standard.


Assuntos
Águas Residuárias , Purificação da Água , Destilação , Rios , Triazinas , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA