Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(48): eabh3686, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826245

RESUMO

Interfaces between materials with differently ordered phases present unique opportunities for exotic physical properties, especially the interplay between ferromagnetism and superconductivity in the ferromagnet/superconductor heterostructures. The investigation of zero- and π-junctions has been of particular interest for both fundamental physical science and emerging technologies. Here, we report the experimental observation of giant oscillatory Gilbert damping in the superconducting niobium/nickel-iron/niobium junctions with respect to the nickel-iron thickness. This observation suggests an unconventional spin pumping and relaxation via zero-energy Andreev bound states that exist not only in the niobium/nickel-iron/niobium π-junctions but also in the niobium/nickel-iron/niobium zero-junctions. Our findings could be important for further exploring the exotic physical properties of ferromagnet/superconductor heterostructures and potential applications of ferromagnet π-junctions in quantum computing, such as half-quantum flux qubits.

2.
Nat Commun ; 12(1): 6725, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795286

RESUMO

Fundamental symmetry breaking and relativistic spin-orbit coupling give rise to fascinating phenomena in quantum materials. Of particular interest are the interfaces between ferromagnets and common s-wave superconductors, where the emergent spin-orbit fields support elusive spin-triplet superconductivity, crucial for superconducting spintronics and topologically-protected Majorana bound states. Here, we report the observation of large magnetoresistances at the interface between a quasi-two-dimensional van der Waals ferromagnet Fe0.29TaS2 and a conventional s-wave superconductor NbN, which provides the possible experimental evidence for the spin-triplet Andreev reflection and induced spin-triplet superconductivity at ferromagnet/superconductor interface arising from Rashba spin-orbit coupling. The temperature, voltage, and interfacial barrier dependences of the magnetoresistance further support the induced spin-triplet superconductivity and spin-triplet Andreev reflection. This discovery, together with the impressive advances in two-dimensional van der Waals ferromagnets, opens an important opportunity to design and probe superconducting interfaces with exotic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...