Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Chem Commun (Camb) ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805194

RESUMO

For the first time, hierarchical porous amorphous metal-organic frameworks (HP-aMOFs) containing ultramicropores, micropores, and mesopores were synthesized by etching a composite of MOF glass (agZIF-76) and ZnO using ammonia. These materials show potential applications in the adsorption of C2 hydrocarbons.

2.
Inorg Chem ; 63(9): 4185-4195, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364251

RESUMO

Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.

3.
ACS Appl Mater Interfaces ; 16(8): 10661-10670, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38377517

RESUMO

Chiral covalent organic frameworks (COFs) hold considerable promise in the realm of heterogeneous asymmetric catalysis. However, fine-tuning the pore environment to enhance both the activity and stereoselectivity of chiral COFs in such applications remains a formidable challenge. In this study, we have successfully designed and synthesized a series of clover-shaped, hydrazone-linked chiral COFs, each with a varying number of accessible chiral pyrrolidine catalytic sites. Remarkably, the catalytic efficiencies of these COFs in the asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde correlate well with the number of accessible pyrrolidine sites within the frameworks. The COF featuring nearly one pyrrolidine moiety at each nodal point demonstrated excellent reaction yields and enantiomeric excess (ee) values, reaching up to 97 and 83%, respectively. The findings not only underscore the profound impact of a deliberately controlled chiral pore environment on the catalytic efficiencies of COFs but also offer a new perspective for the design and synthesis of advanced chiral COFs for efficient asymmetric catalysis.

4.
Chemistry ; 30(14): e202303781, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38196025

RESUMO

Tuning the topology of two-dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site-selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine-functionalized dihydrazide monomer (NH2 -Ah) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover-like 2D COF with free amine groups (NH2 -Ah-Tz) and a honeycomb-like COF without amine groups (Ah-Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover-shaped NH2 -Ah-Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261 mg/g) and congo red (CR, 1560 mg/g) compared to the non-functionalized honeycomb-like Ah-Tz COF (123 mg/g for CV and 1340 mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site-selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.

5.
Dalton Trans ; 52(34): 12087-12097, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581335

RESUMO

The research on amorphous metal-organic frameworks (aMOFs) is still in its infancy, and designing and constructing aMOFs with functional pores remains a challenge. Two aMOFs based on Co(II) and heterotopic triangular ligands with large conjugated aromatic planes, namely aMOF-1 and aMOF-2, were constructed and characterized by IR, XPS, EA, ICP, XANS and so on. aMOF-1 possesses mesopores, whereas aMOF-2 possesses micropores. The porosity, conjugated aromatic plane and uncoordinated N atoms in the framework allow these aMOFs to adsorb iodine and dyes. The iodine adsorption capacity of aMOF-1 is 3.3 g per g, which is higher than that of aMOF-2 (0.56 g per g), mainly due to the expansion or swelling of aMOF-1 after iodine adsorption. The uptake of cationic dyes by aMOF-2 showed more rapid kinetics and a higher removal rate than that by aMOF-1, mainly due to the difference in the porosity and surface charge. Although the surface charges of aMOF-1 and aMOF-2 are negative, both of them showed significantly faster adsorption kinetics toward anionic dyes, among which methyl orange (MO) and Congo red (CR) can be removed in 5 min. This occurs possibly because the quick adsorption of Na+ ions alters the surface charge of the framework and promotes dye uptake. The adsorption capacities of aMOF-1 for MO and CR reached 921 and 2417 mg g-1, respectively. The correlation data for aMOF-2 are 1042 and 1625 mg g-1, respectively. All adsorption capacities are among the highest compared to many cMOFs. Adsorption in mixed dye solution is found to be charge-dependent, kinetic-dependent, and synergetic in these systems. The porosity, surface charge regulation during adsorption, weak interactions and multiple adsorption processes contribute to the dye adsorption performance.

6.
Chem Commun (Camb) ; 59(59): 9118-9121, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37403984

RESUMO

A metal-organic cage (MOC)-based porous salt composed of cationic Zr-MOC and anionic Cu-MOC was incorporated into SBA-15 nanopores via a two-step impregnation method for the first time. The encapsulated MOC-based porous salt showed improved iodine adsorption capacity when compared with the bulk sample.

7.
Precis Chem ; 1(4): 233-240, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388216

RESUMO

Covalent organic frameworks (COFs) have emerged as auspicious porous adsorbents for radioiodine capture. However, their conventional solvothermal synthesis demands multiday synthetic times and anaerobic conditions, largely hampering their practical use. To tackle these challenges, we present a facile microwave-assisted synthesis of 2D imine-linked COFs, Mw-TFB-BD-X, (X = -CH3 and -OCH3) under air within just 1 h. The resultant COFs possessed higher crystallinity, better yields, and more uniform morphology than their solvothermal counterparts. Remarkably, Mw-TFB-BD-CH3 and Mw-TFB-BD-OCH3 exhibited exceptional iodine adsorption capacities of 7.83 g g-1 and 7.05 g g-1, respectively, placing them among the best-performing COF adsorbents for static iodine vapor capture. Moreover, Mw-TFB-BD-CH3 and Mw-TFB-BD-OCH3 can be reused 5 times with no apparent loss in the adsorption capacity. The exceptionally high iodine adsorption capacities and excellent reusability of COFs were mainly attributed to their uniform spherical morphology and enhanced chemical stability due to the in-built electron-donating groups, despite their low surface areas. This work establishes a benchmark for developing advanced iodine adsorbents that combine fast kinetics, high capacity, excellent reusability, and facile rapid synthesis, a set of appealing features that remain challenging to merge in COF adsorbents so far.

8.
ACS Appl Mater Interfaces ; 15(20): 24836-24845, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191124

RESUMO

The development of chiral covalent organic frameworks (COFs) by postsynthetic modification is challenging due to the common occurrences of racemization and crystallinity decrement under harsh modification conditions. Herein, we employ an effective site-selective synthetic strategy for the fabrication of an amine-functionalized hydrazone-linked COF, NH2-Th-Tz COF, by the Schiff-base condensation between aminoterephthalohydrazide (NH2-Th) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). The resulting NH2-Th-Tz COF with free amine groups on the pore walls provides an appealing platform to install desired chiral moieties through postsynthetic modification. Three chiral moieties including tartaric acid, camphor-10-sulfonyl chloride, and diacetyl-tartaric anhydride were postsynthetically integrated into NH2-Th-Tz COF by reacting amine groups with acid, acyl chloride, and anhydride, giving rise to a series of chiral COFs with distinctive chiral pore surfaces. Moreover, the crystallinity, porosity, and chirality of chiral COFs were retained after modification. Remarkably, the chiral COFs exhibited an exceptional enantioselective adsorption capability toward tyrosine with a maximum enantiomeric excess (ee) value of up to 25.20%. Molecular docking simulations along with experimental results underscored the pivotal role of hydrogen bonds between chiral COFs and tyrosine in enantioselective adsorption. This work highlights the potential of site-selective synthesis as an effective tool for the preparation of highly crystalline and robust amine-decorated COFs, which offer an auspicious platform for the facile synthesis of tailor-made chiral COFs for enantioselective adsorption and beyond.

9.
Angew Chem Int Ed Engl ; 62(4): e202216310, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36445778

RESUMO

Despite significant progress on the design and synthesis of covalent organic frameworks (COFs), precise control over microstructures of such materials remains challenging. Herein, two chiral COFs with well-defined one-handed double-helical nanofibrous morphologies were constructed via an unprecedented template-free method, capitalizing on the diastereoselective formation of aminal linkages. Detailed time-dependent experiments reveal the spontaneous transformation of initial rod-like aggregates into the double-helical microstructures. We have further demonstrated that the helical chirality and circular dichroism signal can be facilely inversed by simply adjusting the amount of acetic acid during synthesis. Moreover, by transferring chirality to achiral fluorescent molecular adsorbents, the helical COF nanostructures can effectively induce circularly polarized luminescence with the highest luminescent asymmetric factor (glum ) up to ≈0.01.

10.
Inorg Chem ; 61(43): 16981-16985, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36251482

RESUMO

Metal-organic framework (MOF) glass is a new type of glass material, but it usually lacks sufficient porosity. Thus, regulating the pore structure of MOF glass to improve its adsorption performance is very important. Herein, we found that the porosity of MOF glasses agZIF-62 and agZIF-76 can be regulated via an ammonia-immersion approach. After ammonia immersion, the resulting agZIF-62-NH3 and agZIF-76-NH3 could be maintained in their glass states or converted to their amorphous states, respectively. Their porosity changed according to the gas adsorption experiments. Notably, compared with agZIF-62 and agZIF-76, the iodine uptake capacities for agZIF-62-NH3 and agZIF-76NH3 increased by 12 and 21 times, respectively. This work shows that the subsequent treatment of MOF glass can regulate their adsorption performance.

11.
Chempluschem ; 87(8): e202200172, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922387

RESUMO

Metal-organic cages (MOCs) that assemble from metal ions or metal clusters and organic ligands have attracted the interest of the scientific community because of their various functional coordination cavities. Unlike metal-organic frameworks (MOFs) with infinite frameworks, MOCs have discrete structures, making them soluble and stable in certain solvents and facilitating their application as starting reagents in the further construction of single components or composite materials. In recent years, increasing progress has been made in this field. In this review, we introduce these works from the perspective of design strategies, and focus on how presynthesized MOCs can be used to construct functional materials. Finally, we discuss the challenges and development prospects in this field.


Assuntos
Estruturas Metalorgânicas , Metais , Ligantes , Estruturas Metalorgânicas/química , Metais/química
12.
J Chromatogr A ; 1675: 463155, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35635867

RESUMO

Porous spherical silica-based chiral stationary phases (CSPs) have been commercially used in the field of chiral separation, however, the scope of their application is, to some extent, limited by the instability of silica towards mobile phase containing strong base or acid. As such, developing new matrix-based CSPs is one of the effective strategies to overcome this bottleneck in studies of chiral separation materials. In this work, we have demonstrated that stable spherical covalent organic frameworks (SCOFs) can be utilized as matrixes for the fabrication of new CSPs for the first time. Specifically, a porous imine-linked SCOF with good crystallinity, large surface area, and high chemical stability is synthesized at room temperature. Then, cellulose-tris (3,5-dimethylphenylcarbamate) (CDMPC), a typical cellulose derivative, is selected as a potential chiral selector and coated onto the robust SCOFs, giving rise to the fabrication of new CDMPC@SCOF CSPs. The as-synthesized stable SCOF-based CSPs are exploited for high-performance liquid chromatographic (HPLC) enantioseparation, showing high resolution abilities for the separation of racemic compounds such as metalaxyl, 1-(1-naphthalenyl)ethanol, epoxiconazol, trans-stilbene oxide, and so on. Moreover, the prepared SCOF-based CSPs exhibit more superior acid and base stability than those of the silica-based CSPs. Our work not only uncovers the great potential of SCOFs as matrixes for constructing novel CSPs, but also expands the application of COFs in the field of enantiomeric separation under harsh base and acid conditions.


Assuntos
Estruturas Metalorgânicas , Celulose/química , Cromatografia Líquida de Alta Pressão/métodos , Dióxido de Silício/química , Estereoisomerismo
13.
Chem Commun (Camb) ; 58(32): 5013-5016, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35363232

RESUMO

Two amorphous metal-organic frameworks (aMOFs) were obtained from crystalline Co-MOF (SCNU-Z6) via temperature-induced (aT-SCNU-Z6) and water-immersed (aW-SCNU-Z6) approaches. They exhibited high iodine uptake, with the adsorption capacities of aT-SCNU-Z6 and aW-SCNU-Z6 reaching 2.05 and 5.04 g g-1, respectively. This work is the first report of iodine uptake by aMOFs.


Assuntos
Iodo , Estruturas Metalorgânicas , Adsorção , Iodetos , Estruturas Metalorgânicas/química , Água
14.
World J Clin Cases ; 9(22): 6388-6392, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34435003

RESUMO

BACKGROUND: Prostatic carcinosarcoma is a very rare and highly aggressive tumor. It may occur after androgen deprivation therapy (ADT) for adenocarcinoma even after a 7-year interval. CASE SUMMARY: A 66-year-old man presented with recurrent symptoms of gross hematuria and urinary retention. The patient had a previous history of combined radical prostatectomy and ADT for prostate cancer 7 years prior. He received total pelvic exenteration for a recurrent pelvic carcinosarcoma. Pathology and immunostaining revealed a carcinosarcoma of prostatic origin with focal spindled cells and bizarre giant cells. The patient subsequently underwent transverse colostomy for carcinosarcoma recurrence and bowel obstruction 3 mo later. Five months after the diagnosis of prostatic carcinosarcoma, the patient died of multiple organ metastases. CONCLUSION: Prostatic carcinosarcoma after adenocarcinoma is exceedingly rare. ADT mediated transformation and dedifferentiation of the epithelial components may be the origin of this malignancy.

15.
Chempluschem ; 86(5): 699, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33734610

RESUMO

Invited for this month's cover are the collaborating groups of Sheng-Run Zheng and Wei-Guang Zhang from South China Normal University, China. The cover picture shows an amorphous cationic porous metal-organic material that constructed from the covalent linking of large cationic metal-organic cage for the removal of toxic oxo-anions from water with high capacities and rapid kinetics. Read the full text of the article at 10.1002/cplu.202000570.

16.
ACS Macro Lett ; 10(12): 1590-1596, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549129

RESUMO

Amine-functionalized covalent organic frameworks (COFs) hold great potential in diversified applications. However, the synthesis is dominated by postsynthetic modification, while the de novo synthesis allowing for direct installation of amine groups remains a formidable challenge. Herein, we develop a site-selective synthetic strategy for the facile preparation of amine-functionalized hydrazone-linked COF for the first time. A new monomer 2-aminoterephthalohydrazide (NH2-Th) bearing both amine and hydrazide functionalities is designed to react with benzene-1,3,5-tricarbaldehyde (Bta). Remarkably, the different activity of amine and hydrazide groups toward aldehyde underpin the highly site-selective synthesis of an unprecedented NH2-Th-Bta COF with abundant free amine groups anchored in the well-defined pore channels. Interestingly, NH2-Th-Bta COF exhibits dramatically enhanced iodine uptake capacity (3.58 g g-1) in comparison to that of the nonfunctionalized Th-Bta COF counterpart (0.68 g g-1), and many reported porous adsorbents, despite its low specific surface area. Moreover, NH2-Th-Bta COF possesses exceptional cycling capability and retained high iodine uptake, even after six cycles. This work not only provides a simple and straightforward route for the de novo synthesis of amine-functionalized COFs but also uncovers the great potential of amine-functionalized COFs as adsorbents in the efficient removal of radioiodine and beyond.

17.
Chempluschem ; 86(5): 709-715, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33314751

RESUMO

Cationic amorphous metal-organic cage (MOC)-based materials capable of removing anionic pollutants from water are receiving increasing attention but they are still relatively less reported. Herein, for the first time, a cationic porous MOC-based extended framework, namely, CL-aMOC-1, was constructed by covalent linking of a cationic Pd12 L24 (L=3,5-di-pyridin-4-yl-benzaldehyde) cage with a 1,4-bis(4-aminophenyl)benzene (BAPB) linker. Interestingly, the reaction could be completed within 15 min using an amorphous MOC-based solid (aMOC-1) and BAPB as reactant via a low-temperature solid-state reaction. The CL-aMOC-1 showed improved stability, lower solubility and higher oxo-anion uptake in water compared with the original aMOC-1. The adsorption capacities for CrO4 2- , Cr2 O7 2- and ReO4 - on CL-aMOC-1 were 245.1, 311.5 and 452.5 mg/g, respectively, in which the uptake of Cr(VI)-containing oxo-anions was among the highest compared with those of other metal-organic materials. The CL-aMOC-1 can selectively capture oxo-anions in the presence of competitive anions. It exhibits good reusability as over 85 % of the uptake capacity is retained after 5 cycles. Finally, it shows the ability to remove Cr(VI) ions from electroplating wastewater.

18.
ACS Appl Mater Interfaces ; 12(46): 51837-51845, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33161710

RESUMO

Two-dimensional polyimide covalent organic framework (2D PI-NT COF) films were constructed on indium tin oxide-coated glass substrates to fabricate two-terminal sandwiched resistive memory devices. The 2D PI-NT COF films condensated from the reaction between 4,4',4″-triaminotriphenylamine and naphthalene-1,4,5,8-tetracarboxylic dianhydride under solvothermal conditions demonstrated high crystallinity, good orientation preference, tunable thickness, and low surface roughness. The well-aligned electron-donor (triphenylamine unit) and -acceptor (naphthalene diimide unit) arrays rendered the 2D PI-NT COF films a promising candidate for electronic applications. The memory devices based on 2D PI-NT COF films exhibited a typical write-once-read-many-time resistive switching behavior under an operating voltage of +2.30 V on the positive scan and -2.64 V on the negative scan. A high ON/OFF current ratio (>106 for the positive scan and 104-106 for the negative scan) and long-term retention time indicated the high fidelity, low error, and high stability of the resistive memory devices. The memory behavior was attributed to an electric field-induced intramolecular charge transfer in an ordered donor-acceptor system, which provided the effective charge-transfer channels for injected charge carriers. This work represents the first example that explores the resistive memory properties of 2D PI-COF films, shedding light on the potential application of 2D COFs as information storage media.

19.
Dalton Trans ; 49(35): 12150-12155, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32840538

RESUMO

A metal-organic framework (MOF), namely SCNU-Z3, based on an imidazole-tetrazole tripodal ligand and Mn(ii), has been constructed. It exhibits a porous 3D framework composed of truncated octahedron cage subunits. Unexpected ligand-induced missing metal-ion defects were observed in the framework. In addition, the application of SCNU-Z3 in a supercapacitor was performed.

20.
ACS Appl Mater Interfaces ; 12(16): 19054-19061, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32212629

RESUMO

Ordered interlayer stacking is intrinsic in two-dimensional covalent organic frameworks (2D COFs) and has strong implications on COF's optoelectronic properties. Reversible interlayer sliding, corresponding to shearing of 2D layers along their basal plane, is an appealing dynamic control of both structures and properties, yet it remains unexplored in the 2D COF field. Herein, we demonstrate that the reversible interlayer sliding can be realized in an imine-linked tetrathiafulvalene (TTF)-based COF TTF-DMTA. The solvent treatment induces crystalline phase changes between the proposed staircase-like sql net structure and a slightly slipped eclipsed sql net structure. The solvation-induced crystallinity changes correlate well with reversible spectroscopic and electrical conductivity changes as demonstrated in oriented COF thin films. In contrast, no reversible switching is observed in a related TTF-TA COF, which differs from TTF-DMTA in terms of the absence of methoxy groups on the phenylene linkers. This work represents the first 2D COF example of which eclipsed and staircase-like aggregated states are interchangeably accessed via interlayer sliding, an uncharted structural feature that may enable applications such as chemiresistive sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...