Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3903, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724537

RESUMO

Tropical Cyclones (TCs) are devastating natural disasters. Analyzing four decades of global TC data, here we find that among all global TC-active basins, the South China Sea (SCS) stands out as particularly difficult ocean for TCs to intensify, despite favorable atmosphere and ocean conditions. Over the SCS, TC intensification rate and its probability for a rapid intensification (intensification by ≥ 15.4 m s-1 day-1) are only 1/2 and 1/3, respectively, of those for the rest of the world ocean. Originating from complex interplays between astronomic tides and the SCS topography, gigantic ocean internal tides interact with TC-generated oceanic near-inertial waves and induce a strong ocean cooling effect, suppressing the TC intensification. Inclusion of this interaction between internal tides and TC in operational weather prediction systems is expected to improve forecast of TC intensity in the SCS and in other regions where strong internal tides are present.

2.
Proc Natl Acad Sci U S A ; 121(21): e2313797121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709948

RESUMO

During 2010 to 2020, Northeast Pacific (NEP) sea surface temperature (SST) experienced the warmest decade ever recorded, manifested in several extreme marine heatwaves, referred to as "warm blob" events, which severely affect marine ecosystems and extreme weather along the west coast of North America. While year-to-year internal climate variability has been suggested as a cause of individual events, the causes of the continuous dramatic NEP SST warming remain elusive. Here, we show that other than the greenhouse gas (GHG) forcing, rapid aerosol abatement in China over the period likely plays an important role. Anomalous tropospheric warming induced by declining aerosols in China generated atmospheric teleconnections from East Asia to the NEP, featuring an intensified and southward-shifted Aleutian Low. The associated atmospheric circulation anomaly weakens the climatological westerlies in the NEP and warms the SST there by suppressing the evaporative cooling. The aerosol-induced mean warming of the NEP SST, along with internal climate variability and the GHG-induced warming, made the warm blob events more frequent and intense during 2010 to 2020. As anthropogenic aerosol emissions continue to decrease, there is likely to be an increase in NEP warm blob events, disproportionately large beyond the direct radiative effects.

3.
Nat Commun ; 15(1): 2811, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561343

RESUMO

The Indian Ocean Dipole (IOD) is a major climate variability mode that substantially influences weather extremes and climate patterns worldwide. However, the response of IOD variability to anthropogenic global warming remains highly uncertain. The latest IPCC Sixth Assessment Report concluded that human influences on IOD variability are not robustly detected in observations and twenty-first century climate-model projections. Here, using millennial-length climate simulations, we disentangle forced response and internal variability in IOD change and show that greenhouse warming robustly suppresses IOD variability. On a century time scale, internal variability overwhelms the forced change in IOD, leading to a widespread response in IOD variability. This masking effect is mainly caused by a remote influence of the El Niño-Southern Oscillation. However, on a millennial time scale, nearly all climate models show a long-term weakening trend in IOD variability by greenhouse warming. Our results provide compelling evidence for a human influence on the IOD.

4.
Nat Commun ; 15(1): 3261, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627397

RESUMO

Patterns of sea surface temperature (SST) anomalies of the Indian Ocean Dipole (IOD) exhibit strong diversity, ranging from being dominated by the western tropical Indian Ocean (WTIO) to the eastern tropical Indian Ocean (ETIO). Whether and how the different types of IOD variability patterns affect the variability of Antarctic sea ice is not known, nor is how the impact may change in a warming climate. Here, we find that the leading mode of austral spring Antarctic sea ice variability is dominated by WTIO SST variability rather than ETIO SST or El Niño-Southern Oscillation. WTIO warm SST anomalies excite a poleward-propagating Rossby wave, inducing a tri-polar anomaly pattern characterized by a decrease in sea ice near the Amundsen Sea but an increase in regions on both sides. Such impact has been weakening in the two decades post-2000, accompanied by weakened WTIO SST variability. Under greenhouse warming, climate models project a decrease in WTIO SST variability, suggesting that the reduced impact on Antarctic sea ice from the IOD will likely to continue, facilitating a fast decline of Antarctic sea ice.

5.
Nat Commun ; 15(1): 2155, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461160

RESUMO

The summer Eurasian westerly jet is reported to become weaker and wavier, thus promoting the frequent weather extremes. However, the primary driver of the changing jet stream remains in debate, mainly due to the regionality and seasonality of the Eurasian jet. Here we report a sharp increase, by approximately 140%, in the interannual variability of the summertime East Asian jet (EAJ) since the end of twentieth century. Such interdecadal change induces considerable changes in the large-scale circulation pattern across Eurasia, and consequently weather and climate extremes including heatwaves, droughts, and Asian monsoonal rainfall regime shifts. The trigger mainly emerges from preceding February North Atlantic seesaw called Scandinavian pattern (contributing to 81.1 ± 2.9% of the enhanced EAJ variability), which harnesses the "cross-seasonal-coupled oceanic-atmospheric bridge" to exert a delayed impact on EAJ and thus aids relevant predictions five months in advance. However, projections from state-of-the-art models with prescribed anthropogenic forcing exhibit no similar circulation changes. This sheds light on that, at the interannual timescale, a substantial portion of recently increasing variability in the East Asian sector of the Eurasian westerly jet arises from unforced natural variability.

6.
Nat Commun ; 15(1): 18, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168125

RESUMO

Observational evidence and climate model experiments suggest a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) since the mid-1990s. Increased greenhouse gases and the declined anthropogenic aerosols (AAs) over North America and Europe are believed to contribute to the AMOC slowdown. Asian AAs continue to increase but the associated impact has been unclear. Using ensembles of climate simulations, here we show that the radiative cooling resulting from increased Asian AAs drives an AMOC reduction. The increased AAs over Asia generate circumglobal stationary Rossby waves in the northern midlatitudes, which shift the westerly jet stream southward and weaken the subpolar North Atlantic westerlies. Consequently, reduced transport of cold air from North America hinders water mass transformation in the Labrador Sea and thus contributes to the AMOC slowdown. The link between increased Asian AAs and an AMOC slowdown is supported by different models with different configurations. Thus, reducing emissions of Asian AAs will not only lower local air pollution, but also help stabilize the AMOC.

7.
Nat Commun ; 15(1): 671, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253634

RESUMO

The offshore ocean heat supplied to the Antarctic continental shelves by warm eddies has the potential to greatly impact the melting rates of ice shelves and subsequent global sea level rise. While featured in modeling and some observational studies, the processes around how these warm eddies form and overcome the dynamic sub-surface barrier of the Antarctic Slope Front over the upper continental slope has not yet been clarified. Here we report on the detailed observations of persistent eddies carrying warm modified Circumpolar Deep Water (CDW) onto the continental shelf of Prydz Bay, East Antarctica, using subsurface mooring and hydrographic section data from 2013-2015. We show the warm-eddy transport is most active when the summer westerlies strengthen, which promotes the upwelling of CDW and initiates eddy formation and intrusions. Our study highlights the important role of warm eddies in the melting of Antarctica's ice shelves, both now and into the future.

9.
Nat Commun ; 14(1): 5887, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735448

RESUMO

The El Niño-Southern Oscillation (ENSO) is a consequential climate phenomenon affecting global extreme weather events often with largescale socioeconomic impacts. To what extent the impact affects the macroeconomy, how long the impact lasts, and how the impact may change in a warming climate are important questions for the field. Using a smooth nonlinear climate-economy model fitted with historical data, here we find a damaging impact from an El Niño which increases for a further three years after initial shock, amounting to multi-trillion US dollars in economic loss; we attribute a loss of US$2.1 T and US$3.9 T globally to the 1997-98 and 2015-16 extreme El Niño events, far greater than that based on tangible losses. We find impacts from La Niña are asymmetric and weaker, and estimate a gain of only US$0.06 T from the 1998-99 extreme La Niña event. Under climate change, economic loss grows exponentially with increased ENSO variability. Under a high-emission scenario, increased ENSO variability causes an additional median loss of US$33 T to the global economy at a 3% discount rate aggregated over the remainder of the 21st century. Thus, exacerbated economic damage from changing ENSO in a warming climate should be considered in assessments of mitigation strategies.

10.
Nature ; 619(7971): 774-781, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37495880

RESUMO

Most El Niño events occur sporadically and peak in a single winter1-3, whereas La Niña tends to develop after an El Niño and last for two years or longer4-7. Relative to single-year La Niña, consecutive La Niña features meridionally broader easterly winds and hence a slower heat recharge of the equatorial Pacific6,7, enabling the cold anomalies to persist, exerting prolonged impacts on global climate, ecosystems and agriculture8-13. Future changes to multi-year-long La Niña events remain unknown. Here, using climate models under future greenhouse-gas forcings14, we find an increased frequency of consecutive La Niña ranging from 19 ± 11% in a low-emission scenario to 33 ± 13% in a high-emission scenario, supported by an inter-model consensus stronger in higher-emission scenarios. Under greenhouse warming, a mean-state warming maximum in the subtropical northeastern Pacific enhances the regional thermodynamic response to perturbations, generating anomalous easterlies that are further northward than in the twentieth century in response to El Niño warm anomalies. The sensitivity of the northward-broadened anomaly pattern is further increased by a warming maximum in the equatorial eastern Pacific. The slower heat recharge associated with the northward-broadened easterly anomalies facilitates the cold anomalies of the first-year La Niña to persist into a second-year La Niña. Thus, climate extremes as seen during historical consecutive La Niña episodes probably occur more frequently in the twenty-first century.


Assuntos
Modelos Climáticos , El Niño Oscilação Sul , Aquecimento Global , Ecossistema , Estações do Ano , Oceano Pacífico , Efeito Estufa , Termodinâmica
11.
Sci Adv ; 9(25): eadh2412, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343086

RESUMO

Convective extreme El Niño (CEE) events, characterized by strong convective events in the eastern Pacific, are known to have a direct link to anomalous climate conditions worldwide, and it has been reported that CEE will occur more frequently under greenhouse warming. Here, using a set of CO2 ramp-up and ramp-down ensemble experiments, we show that frequency and maximum intensity of CEE events increase further in the ramp-down period from the ramp-up period. These changes in CEE are associated with the southward shift of the intertropical convergence zone and intensified nonlinear rainfall response to sea surface temperature change in the ramp-down period. The increasing frequency of CEE has substantial impacts on regional abnormal events and contributed considerably to regional mean climate changes to the CO2 forcings.

12.
Sci Bull (Beijing) ; 68(9): 946-960, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37085399

RESUMO

The Southern Ocean has warmed substantially, and up to early 21st century, Antarctic stratospheric ozone depletion and increasing atmospheric CO2 have conspired to intensify Southern Ocean warming. Despite a projected ozone recovery, fluxes to the Southern Ocean of radiative heat and freshwater from enhanced precipitation and melting sea ice, ice shelves, and ice sheets are expected to increase, as is a Southern Ocean westerly poleward intensification. The warming has far-reaching climatic implications for melt of Antarctic ice shelf and ice sheet, sea level rise, and remote circulations such as the intertropical convergence zone and tropical ocean-atmosphere circulations, which affect extreme weathers, agriculture, and ecosystems. The surface warm and freshwater anomalies are advected northward by the mean circulation and deposited into the ocean interior with a zonal-mean maximum at ∼45°S. The increased momentum and buoyancy fluxes enhance the Southern Ocean circulation and water mass transformation, further increasing the heat uptake. Complex processes that operate but poorly understood include interactive ice shelves and ice sheets, oceanic eddies, tropical-polar interactions, and impact of the Southern Ocean response on the climate change forcing itself; in particular, limited observations and low resolution of climate models hinder rapid progress. Thus, projection of Southern Ocean warming will likely remain uncertain, but recent community effort has laid a solid foundation for substantial progress.

13.
Nat Commun ; 14(1): 1335, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906683

RESUMO

Oceanic eddy-induced meridional heat transport (EHT) is an important process in the Southern Ocean heat budget, the variability of which significantly modulates global meridional overturning circulation (MOC) and Antarctic sea-ice extent. Although it is recognized that mesoscale eddies with scales of ~40-300 km greatly contribute to the EHT, the role of submesoscale eddies with scales of ~1-40 km remains unclear. Here, using two state-of-the-art high-resolution simulations (resolutions of 1/48° and 1/24°), we find that submesoscale eddies significantly enhance the total poleward EHT in the Southern Ocean with an enhancement percentage reaching 19-48% in the Antarctic Circumpolar Current band. By comparing the eddy energy budgets between the two simulations, we detect that the primary role of submesoscale eddies is to strengthen mesoscale eddies (and thus their heat transport capability) through inverse energy cascade rather than directly through submesoscale heat fluxes. Due to the submesoscale-mediated enhancement of mesoscale eddies in the 1/48° simulation, the clockwise upper cell and anti-clockwise lower cell of the residual-mean MOC in the Southern Ocean are weakened and strengthened, respectively. This finding identifies a potential route to improve the mesoscale parameterization in climate models for more accurate simulations of the MOC and sea ice variability in the Southern Ocean.

15.
Nat Commun ; 13(1): 6616, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379936

RESUMO

El Niño-Southern Oscillation (ENSO) features strong warm events in the eastern equatorial Pacific (EP), or mild warm and strong cold events in the central Pacific (CP), with distinct impacts on global climates. Under transient greenhouse warming, models project increased sea surface temperature (SST) variability of both ENSO regimes, but the timing of emergence out of internal variability remains unknown for either regime. Here we find increased EP-ENSO SST variability emerging by around 2030 ± 6, more than a decade earlier than that of CP-ENSO, and approximately four decades earlier than that previously suggested without separating the two regimes. The earlier EP-ENSO emergence results from a stronger increase in EP-ENSO rainfall response, which boosts the signal of increased SST variability, and is enhanced by ENSO non-linear atmospheric feedback. Thus, increased ENSO SST variability under greenhouse warming is likely to emerge first in the eastern than central Pacific, and decades earlier than previously anticipated.


Assuntos
Temperatura Baixa , El Niño Oscilação Sul
16.
Nat Clim Chang ; 12(2): 179-186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35757518

RESUMO

Marine heatwaves (MHWs), episodic periods of abnormally high sea surface temperature (SST), severely affect marine ecosystems. Large Marine Ecosystems (LMEs) cover ~22% of the global ocean but account for 95% of global fisheries catches. Yet how climate change affects MHWs over LMEs remains unknown, because such LMEs are confined to the coast where low-resolution climate models are known to have biases. Here, using a high-resolution Earth system model and applying a "future threshold" that considers MHWs as anomalous warming above the long-term mean warming of SSTs, we find that future intensity and annual days of MHWs over majority of the LMEs remain higher than in the present-day climate. Better resolution of ocean mesoscale eddies enables simulation of more realistic MHWs than low-resolution models. These increases in MHWs under global warming poses a serious threat to LMEs, even if resident organisms could adapt fully to the long-term mean warming.

17.
Proc Natl Acad Sci U S A ; 119(23): e2120335119, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639698

RESUMO

SignificanceThe western Pacific subtropical high (WPSH) channels moisture from the tropics that underpins the East Asian summer climate. Interannual variability of the WPSH dominates climate extremes in the densely populated countries of East Asia. In 2020, an anomalously strong WPSH led to catastrophic floods with hundreds of deaths, 28,000 homes destroyed, and tens of billions in economic damage in China alone. How the frequency of such strong WPSH events will change is of great societal concern. Our finding of an increase in future WPSH variability, translating into an increased frequency of climate extreme as seen in the 2020 episode, highlights the increased risks for the billions of people in the densely populated East Asia with profound socioeconomic consequences.

18.
Sci Total Environ ; 818: 151722, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34813804

RESUMO

Biogenic emissions are widely known as important precursors of ozone, yet there is potentially a strong interaction and synergy between biogenic and anthropogenic emissions, including volatile organic compounds (VOCs) and nitrogen oxides (NOx), in modulating ozone formation. To a large extent, the synergy affects the effectiveness of anthropogenic emission control, thereby reshaping the O3-NOx-VOC empirical kinetic modeling approach (EKMA) diagram. Focusing on the ozone pollution period of June 2017 in the North China Plain, we design almost 500 numerical experiments using regional air quality model Community Multiscale Air Quality (CMAQ) that revealed an interesting synergic effect, defined as the contribution of biogenic emissions to ozone concentrations concomitant with a reduction in anthropogenic emissions. A quasi-EKMA diagram is constructed to delineate the contribution of biogenic emissions to ozone concentrations, indicative of a linearly amplified or nonlinearly weakened result associated with reductions in anthropogenic VOCs or NOx emissions, respectively, illustrating the dipole characteristics of the synergic effect. The reduced ozone contribution from biogenic emissions along with NOx emission reduction can be used to represent controllable biogenically induced ozone (BIO). Both the amplified and controllable BIO are tightly linked to both local emissions and regional transport, implicative of an essential role in joint regional emission control. In regard to ozone exceedance, the role of biogenic emissions may be even more important, in that its contribution is comparable to or even larger than that of anthropogenic emissions when associated with a reduction in anthropogenic emissions, which is clearly demonstrated based on the near carbon neutrality scenario shared socioeconomic pathway (SSP) 126. Meanwhile, the biogenic emissions may steer the modulation of anthropogenic emissions in the change rate of MDA8 ozone concentration. Therefore, the synergic effect of biogenic and anthropogenic emissions elucidated in this study should be carefully considered in future ozone pollution control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
19.
Science ; 374(6563): eaay9165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591645

RESUMO

Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño­Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. "Decadal," which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.

20.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34433566

RESUMO

Variability of North Tropical Atlantic (NTA) sea surface temperature (SST), characterized by a near-uniform warming at its positive phase, is a consequential mode of climate variability. Modulated by El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation, NTA warm anomalies tend to induce La Niña events, droughts in Northeast Brazil, increased frequency of extreme hurricanes, and phytoplankton blooms in the Guinea Dome. Future changes of NTA variability could have profound socioeconomic impacts yet remain unknown. Here, we reveal a robust intensification of NTA variability under greenhouse warming. This intensification mainly arises from strengthening of ENSO-forced Pacific-North American pattern and tropospheric temperature anomalies, as a consequence of an eastward shift of ENSO-induced equatorial Pacific convection and of increased ENSO variability, which enhances ENSO influence by reinforcing the associated wind and moist convection anomalies. The intensification of NTA SST variability suggests increased occurrences of extreme NTA events, with far-reaching ramifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...