Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(9): 1724-1732, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236069

RESUMO

The field of oncology has been transformed by immune checkpoint inhibitors (ICI) and other immune-based agents; however, many patients do not receive a durable benefit. While biomarker assessments from pivotal ICI trials have uncovered certain mechanisms of resistance, results thus far have only scraped the surface. Mechanisms of resistance are as complex as the tumor microenvironment (TME) itself, and the development of effective therapeutic strategies will only be possible by building accurate models of the tumor-immune interface. With advancement of multi-omic technologies, high-resolution characterization of the TME is now possible. In addition to sequencing of bulk tumor, single-cell transcriptomic, proteomic, and epigenomic data as well as T-cell receptor profiling can now be simultaneously measured and compared between responders and nonresponders to ICI. Spatial sequencing and imaging platforms have further expanded the dimensionality of existing technologies. Rapid advancements in computation and data sharing strategies enable development of biologically interpretable machine learning models to integrate data from high-resolution, multi-omic platforms. These models catalyze the identification of resistance mechanisms and predictors of benefit in ICI-treated patients, providing scientific foundation for novel clinical trials. Moving forward, we propose a framework by which in silico screening, functional validation, and clinical trial biomarker assessment can be used for the advancement of combined immunotherapy strategies.


Assuntos
Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/genética , Genômica/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Proteômica/métodos
2.
Cancer Cell ; 41(8): 1516-1534.e9, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37541244

RESUMO

Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.


Assuntos
Neoplasias Pulmonares , Animais , Humanos , Montagem e Desmontagem da Cromatina , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Cromatina , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Mutação , Mamíferos/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
PLoS Pathog ; 19(7): e1011351, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410700

RESUMO

Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Histona Desmetilases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo
4.
PLoS Biol ; 21(6): e3002097, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310920

RESUMO

Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.


Assuntos
COVID-19 , Internalização do Vírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/genética , COVID-19/metabolismo , Dipeptidil Peptidase 4 , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Quinases Dyrk
5.
Nat Genet ; 55(3): 471-483, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36894709

RESUMO

Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Cromatina , COVID-19/genética , DNA Helicases/genética , Proteínas Nucleares/genética , SARS-CoV-2 , Fatores de Transcrição/genética
6.
Elife ; 112022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043466

RESUMO

Metastatic breast cancer remains a major cause of cancer-related deaths in women, and there are few effective therapies against this advanced disease. Emerging evidence suggests that key steps of tumor progression and metastasis are controlled by reversible epigenetic mechanisms. Using an in vivo genetic screen, we identified WDR5 as an actionable epigenetic regulator that is required for metastatic progression in models of triple-negative breast cancer. We found that knockdown of WDR5 in breast cancer cells independently impaired their tumorigenic as well as metastatic capabilities. Mechanistically, WDR5 promotes cell growth by increasing ribosomal gene expression and translation efficiency in a KMT2-independent manner. Consistently, pharmacological inhibition or degradation of WDR5 impedes cellular translation rate and the clonogenic ability of breast cancer cells. Furthermore, a combination of WDR5 targeting with mTOR inhibitors leads to potent suppression of translation and proliferation of breast cancer cells. These results reveal novel therapeutic strategies to treat metastatic breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proliferação de Células
7.
Sci Transl Med ; 14(630): eabf5473, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108062

RESUMO

Metastasis is the major cause of cancer-related deaths due to the lack of effective therapies. Emerging evidence suggests that certain epigenetic and transcriptional regulators drive cancer metastasis and could be targeted for metastasis treatment. To identify epigenetic regulators of breast cancer metastasis, we profiled the transcriptomes of matched pairs of primary breast tumors and metastases from human patients. We found that distant metastases are more immune inert with increased M2 macrophages compared to their matched primary tumors. The acetyl-lysine reader, cat eye syndrome chromosome region candidate 2 (CECR2), was the top up-regulated epigenetic regulator in metastases associated with an increased abundance of M2 macrophages and worse metastasis-free survival. CECR2 was required for breast cancer metastasis in multiple mouse models, with more profound effect in the immunocompetent setting. Mechanistically, the nuclear factor κB (NF-κB) family member v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA) recruits CECR2 to increase chromatin accessibility and activate the expression of their target genes. These target genes include multiple metastasis-promoting genes, such as TNC, MMP2, and VEGFA, and cytokine genes CSF1 and CXCL1, which are critical for immunosuppression at metastatic sites. Consistent with these results, pharmacological inhibition of CECR2 bromodomain impeded NF-κB-mediated immune suppression by macrophages and inhibited breast cancer metastasis. These results reveal that targeting CECR2 may be a strategy to treat metastatic breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Terapia de Imunossupressão , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Metástase Neoplásica/patologia , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição
8.
Med Ref Serv Q ; 41(1): 13-25, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35225737

RESUMO

Bioinformatics is essential for basic and clinical research. Peer-to-peer (P2P) teaching was used to respond to the bioinformatics training needs at a research-intensive institution. In addition to the data collected from the workshops, personal experiences of the teachers were used to understand incentives, challenges, and benefits of P2P teaching. Developing communication skills such as confidence in teaching, explaining complex concepts, and better understanding of topics benefited P2P teachers. Lack of time and classroom management were identified as major challenges. Hence, P2P teaching can be beneficial not only for bioinformatics trainees but also as a professional development opportunity for peer teachers.


Assuntos
Biologia Computacional , Educação de Graduação em Medicina , Currículo , Motivação , Grupo Associado , Ensino
9.
Nature ; 598(7882): 682-687, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671158

RESUMO

Tumours use various strategies to evade immune surveillance1,2. Immunotherapies targeting tumour immune evasion such as immune checkpoint blockade have shown considerable efficacy on multiple cancers3,4 but are ineffective for most patients due to primary or acquired resistance5-7. Recent studies showed that some epigenetic regulators suppress anti-tumour immunity2,8-12, suggesting that epigenetic therapies could boost anti-tumour immune responses and overcome resistance to current immunotherapies. Here we show that, in mouse melanoma models, depletion of KDM5B-an H3K4 demethylase that is critical for melanoma maintenance and drug resistance13-15-induces robust adaptive immune responses and enhances responses to immune checkpoint blockade. Mechanistically, KDM5B recruits the H3K9 methyltransferase SETDB1 to repress endogenous retroelements such as MMVL30 in a demethylase-independent manner. Derepression of these retroelements activates cytosolic RNA-sensing and DNA-sensing pathways and the subsequent type-I interferon response, leading to tumour rejection and induction of immune memory. Our results demonstrate that KDM5B suppresses anti-tumour immunity by epigenetic silencing of retroelements. We therefore reveal roles of KDM5B in heterochromatin regulation and immune evasion in melanoma, opening new paths for the development of KDM5B-targeting and SETDB1-targeting therapies to enhance tumour immunogenicity and overcome immunotherapy resistance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Melanoma/imunologia , Retroelementos , Evasão Tumoral , Animais , Linhagem Celular Tumoral , Epigênese Genética , Heterocromatina , Humanos , Interferon Tipo I/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares , Proteínas Repressoras
11.
Cell ; 184(1): 76-91.e13, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33147444

RESUMO

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.


Assuntos
Infecções por Coronavirus/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Coronavirus/classificação , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Células HEK293 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Células Vero , Internalização do Vírus
12.
Nat Commun ; 11(1): 1833, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286255

RESUMO

Small molecule inhibitor of the bromodomain and extraterminal domain (BET) family proteins is a promising option for cancer treatment. However, current BET inhibitors are limited by their potency or oral bioavailability. Here we report the discovery and characterization of NHWD-870, a BET inhibitor that is more potent than three major clinical stage BET inhibitors BMS-986158, OTX-015, and GSK-525762. NHWD-870 causes tumor shrinkage or significantly suppresses tumor growth in nine xenograft or syngeneic models. In addition to its ability to downregulate c-MYC and directly inhibit tumor cell proliferation, NHWD-870 blocks the proliferation of tumor associated macrophages (TAMs) through multiple mechanisms, partly by reducing the expression and secretion of macrophage colony-stimulating factor CSF1 by tumor cells. NHWD-870 inhibits CSF1 expression through suppressing BRD4 and its target HIF1α. Taken together, these results reveal a mechanism by which BRD4 inhibition suppresses tumor growth, and support further development of NHWD-870 to treat solid tumors.


Assuntos
Comunicação Celular , Proteínas de Ciclo Celular/antagonistas & inibidores , Macrófagos/patologia , Neoplasias/patologia , Fatores de Transcrição/antagonistas & inibidores , Administração Oral , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Desenho de Fármacos , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resultado do Tratamento
13.
BMC Med Genomics ; 13(1): 33, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143622

RESUMO

BACKGROUND: Few somatic mutations have been linked to breast cancer metastasis, whereas transcriptomic differences among primary tumors correlate with incidence of metastasis, especially to the lungs and brain. However, the epigenomic alterations and transcription factors (TFs) which underlie these alterations remain unclear. METHODS: To identify these, we performed RNA-seq, Chromatin Immunoprecipitation and sequencing (ChIP-seq) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) of the MDA-MB-231 cell line and its brain (BrM2) and lung (LM2) metastatic sub-populations. We incorporated ATAC-seq data from TCGA to assess metastatic open chromatin signatures, and gene expression data from human metastatic datasets to nominate transcription factor biomarkers. RESULTS: Our integrated epigenomic analyses found that lung and brain metastatic cells exhibit both shared and distinctive signatures of active chromatin. Notably, metastatic sub-populations exhibit increased activation of both promoters and enhancers. We also integrated these data with chromosome conformation capture coupled with ChIP-seq (HiChIP) derived enhancer-promoter interactions to predict enhancer-controlled pathway alterations. We found that enhancer changes are associated with endothelial cell migration in LM2, and negative regulation of epithelial cell proliferation in BrM2. Promoter changes are associated with vasculature development in LM2 and homophilic cell adhesion in BrM2. Using ATAC-seq, we identified a metastasis open-chromatin signature that is elevated in basal-like and HER2-enriched breast cancer subtypes and associates with worse prognosis in human samples. We further uncovered TFs associated with the open chromatin landscapes of metastatic cells and whose expression correlates with risk for metastasis. While some of these TFs are associated with primary breast tumor subtypes, others more specifically correlate with lung or brain metastasis. CONCLUSIONS: We identify distinctive epigenomic properties of breast cancer cells that metastasize to the lung and brain. We also demonstrate that signatures of active chromatin sites are partially linked to human breast cancer subtypes with poor prognosis, and that specific TFs can independently distinguish lung and brain relapse.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Cromatina , Neoplasias Pulmonares , Proteínas de Neoplasias , Fatores de Transcrição , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Cromatina/patologia , Sequenciamento de Cromatina por Imunoprecipitação , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Oncogene ; 39(18): 3726-3737, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157212

RESUMO

Lineage selective transcription factors (TFs) are important regulators of tumorigenesis, but their biological functions are often context dependent with undefined epigenetic mechanisms of action. In this study, we uncover a conditional role for the endodermal and pulmonary specifying TF GATA6 in lung adenocarcinoma (LUAD) progression. Impairing Gata6 in genetically engineered mouse models reduces the proliferation and increases the differentiation of Kras mutant LUAD tumors. These effects are influenced by the epithelial cell type that is targeted for transformation and genetic context of Kras-mediated tumor initiation. In LUAD cells derived from surfactant protein C expressing progenitors, we identify multiple genomic loci that are bound by GATA6. Moreover, suppression of Gata6 in these cells significantly alters chromatin accessibility, particularly at distal enhancer elements. Analogous to its paradoxical activity in lung development, GATA6 expression fluctuates during different stages of LUAD progression and can epigenetically control diverse transcriptional programs associated with bone morphogenetic protein signaling, alveolar specification, and tumor suppression. These findings reveal how GATA6 can modulate the chromatin landscape of lung cancer cells to control their proliferation and divergent lineage dependencies during tumor progression.


Assuntos
Adenocarcinoma de Pulmão/genética , Fator de Transcrição GATA6/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/patologia , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Cromatina/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos
15.
Mol Cancer Res ; 17(12): 2343-2355, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31551255

RESUMO

The integrated stress response (ISR) is a conserved pathway that is activated by cells that are exposed to stress. In lung adenocarcinoma, activation of the ATF4 branch of the ISR by certain oncogenic mutations has been linked to the regulation of amino acid metabolism. In the present study, we provide evidence for ATF4 activation across multiple stages and molecular subtypes of human lung adenocarcinoma. In response to extracellular amino acid limitation, lung adenocarcinoma cells with diverse genotypes commonly induce ATF4 in an eIF2α-dependent manner, which can be blocked pharmacologically using an ISR inhibitor. Although suppressing eIF2α or ATF4 can trigger different biological consequences, adaptive cell-cycle progression and cell migration are particularly sensitive to inhibition of the ISR. These phenotypes require the ATF4 target gene asparagine synthetase (ASNS), which maintains protein translation independently of the mTOR/PI3K pathway. Moreover, NRF2 protein levels and oxidative stress can be modulated by the ISR downstream of ASNS. Finally, we demonstrate that ASNS controls the biosynthesis of select proteins, including the cell-cycle regulator cyclin B1, which are associated with poor lung adenocarcinoma patient outcome. Our findings uncover new regulatory layers of the ISR pathway and its control of proteostasis in lung cancer cells. IMPLICATIONS: We reveal novel regulatory mechanisms by which the ISR controls selective protein translation and is required for cell-cycle progression and migration of lung cancer cells.


Assuntos
Fator 4 Ativador da Transcrição/genética , Adenocarcinoma de Pulmão/genética , Fator de Iniciação 2 em Eucariotos/genética , Estresse Fisiológico/genética , Fator 4 Ativador da Transcrição/metabolismo , Adenocarcinoma de Pulmão/patologia , Aminoácidos/genética , Aminoácidos/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina B1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Fosfatidilinositol 3-Quinases/genética , Biossíntese de Proteínas , Proteostase , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
16.
Cell Rep ; 27(4): 1277-1292.e7, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018140

RESUMO

The brain is a major site of relapse for several cancers, yet deciphering the mechanisms of brain metastasis remains a challenge because of the complexity of the brain tumor microenvironment (TME). To define the molecular landscape of brain metastasis from intact tissue in vivo, we employ an RNA-sequencing-based approach, which leverages the transcriptome of xenografts and distinguishes tumor cell and stromal gene expression with improved sensitivity and accuracy. Our data reveal shifts in epithelial and neuronal-like lineage programs in malignant cells as they adapt to the brain TME and the reciprocal neuroinflammatory response of the stroma. We identify several transcriptional hallmarks of metastasis that are specific to particular regions of the brain, induced across multiple tumor types, and confirmed in syngeneic models and patient biopsies. These data may serve as a resource for exploring mechanisms of TME co-adaptation within, as well as across, different subtypes of brain metastasis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/secundário , Inflamação/patologia , Neoplasias/patologia , Plasticidade Neuronal/genética , Células Estromais/patologia , Microambiente Tumoral/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem da Célula , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Células Estromais/metabolismo , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
FASEB J ; 33(4): 4802-4813, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30592625

RESUMO

Increased levels of the calcium-binding protein neuronal calcium sensor 1 (NCS1) predict an unfavorable patient outcome in several aggressive cancers, including breast and liver tumors. Previous studies suggest that NCS1 overexpression facilitates metastatic spread of these cancers. To investigate this hypothesis, we explored the effects of NCS1 overexpression on cell proliferation, survival, and migration patterns in vitro in 2- and 3-dimensional (2/3-D). Furthermore, we translated our results into an in vivo mouse xenograft model. Cell-based proliferation assays were used to demonstrate the effects of overexpression of NCS1 on growth rates. In vitro colony formation and wound healing experiments were performed and 3-D migration dynamics were studied using collagen gels. Nude mice were injected with breast cancer cells to monitor NCS1-dependent metastasis formation over time. We observed that increased NCS1 levels do not change cellular growth rates, but do significantly increase 2- and 3-D migration dynamics in vitro. Likewise, NCS1-overexpressing cells have an increased capacity to form distant metastases and demonstrate better survival and less necrosis in vivo. We found that NCS1 preferentially localizes to the leading edge of cells and overexpression increases the motility of cancer cells. Furthermore, this phenotype is correlated with an increased number of metastases in a xenograft model. These results lay the foundation for exploring the relevance of an NCS1-mediated pathway as a metastatic biomarker and as a target for pharmacologic interventions.-Apasu, J. E., Schuette, D., LaRanger, R., Steinle, J. A., Nguyen, L. D., Grosshans, H. K., Zhang, M., Cai, W. L., Yan, Q., Robert, M. E., Mak, M., Ehrlich, B. E. Neuronal calcium sensor 1 (NCS1) promotes motility and metastatic spread of breast cancer cells in vitro and in vivo.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Feminino , Humanos , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Elife ; 72018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30355451

RESUMO

Whereas VHL inactivation is a primary event in clear cell renal cell carcinoma (ccRCC), the precise mechanism(s) of how this interacts with the secondary mutations in tumor suppressor genes, including PBRM1, KDM5C/JARID1C, SETD2, and/or BAP1, remains unclear. Gene expression analyses reveal that VHL, PBRM1, or KDM5C share a common regulation of interferon response expression signature. Loss of HIF2α, PBRM1, or KDM5C in VHL-/-cells reduces the expression of interferon stimulated gene factor 3 (ISGF3), a transcription factor that regulates the interferon signature. Moreover, loss of SETD2 or BAP1 also reduces the ISGF3 level. Finally, ISGF3 is strongly tumor-suppressive in a xenograft model as its loss significantly enhances tumor growth. Conversely, reactivation of ISGF3 retards tumor growth by PBRM1-deficient ccRCC cells. Thus after VHL inactivation, HIF induces ISGF3, which is reversed by the loss of secondary tumor suppressors, suggesting that this is a key negative feedback loop in ccRCC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/patologia , Regulação da Expressão Gênica , Genes Supressores de Tumor , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Neoplasias Renais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos Nus , Transplante de Neoplasias
19.
PLoS Biol ; 16(8): e2006134, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080846

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) stimulator of interferon genes (STING) senses pathogen-derived or abnormal self-DNA in the cytosol and triggers an innate immune defense against microbial infection and cancer. STING agonists induce both innate and adaptive immune responses and are a new class of cancer immunotherapy agents tested in multiple clinical trials. However, STING is commonly silenced in cancer cells via unclear mechanisms, limiting the application of these agonists. Here, we report that the expression of STING is epigenetically suppressed by the histone H3K4 lysine demethylases KDM5B and KDM5C and is activated by the opposing H3K4 methyltransferases. The induction of STING expression by KDM5 blockade triggered a robust interferon response in a cytosolic DNA-dependent manner in breast cancer cells. This response resulted in resistance to infection by DNA and RNA viruses. In human tumors, KDM5B expression is inversely associated with STING expression in multiple cancer types, with the level of intratumoral CD8+ T cells, and with patient survival in cancers with a high level of cytosolic DNA, such as human papilloma virus (HPV)-positive head and neck cancer. These results demonstrate a novel epigenetic regulatory pathway of immune response and suggest that KDM5 demethylases are potential targets for antipathogen treatment and anticancer immunotherapy.


Assuntos
Histona Desmetilases/fisiologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Linhagem Celular , Citosol/metabolismo , DNA/metabolismo , Histona Metiltransferases/fisiologia , Histonas/fisiologia , Humanos , Imunidade Inata/fisiologia , Imunoterapia , Interferons/metabolismo , Interferons/fisiologia , Células MCF-7 , Proteínas de Membrana/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...