Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616088

RESUMO

ZnSnN2 has potential applications in photocatalysis and photovoltaics. However, the difficulty in preparing nondegenerate ZnSnN2 hinders its device application. Here, the preparation of low-electron-density nanocrystalline ZnSnN2 and its device application are demonstrated. Nanocrystalline ZnSnN2 was prepared with reactive sputtering. Nanocrystalline ZnSnN2 with an electron density of approximately 1017 cm-3 can be obtained after annealing at 300 °C. Nanocrystalline ZnSnN2 is found to form Schottky contact with Ag. Both the current I vs. voltage V curves and the capacitance C vs. voltage V curves of these samples follow the related theories of crystalline semiconductors due to the limited long-range order provided by the crystallites with sizes of 2-10 nm. The I-V curves together with the nonlinear C-2-V curves imply that there are interface states at the Ag-nanocrystalline ZnSnN2 interface. The application of nanocrystalline ZnSnN2 to heterojunction solar cells is also demonstrated.

2.
ACS Omega ; 2(3): 774-783, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457470

RESUMO

Controlling the emission efficiency, direction, and polarization of optical sources with nanoantennas is of crucial importance in many nanophotonic applications. In this article, we design a subwavelength multilayer metal-dielectric nanoantenna consisting of three identical gold strips that are separated by two dielectric spacers. It is shown that a local dipole source can efficiently excite several hybridized plasmonic modes in the nanoantenna, including one electric dipole (ED) and two magnetic dipole (MD) resonances. The coherent interplay between the ED and MDs leads to unidirectional emissions in opposite directions at different wavelengths. The relative phase difference between these resonant modes determines the exact emission direction. Additionally, with a proper spacer thickness and filling medium, it is possible to control the spectral positions of the forward and backward unidirectional emissions and to exchange the wavelengths for two unidirectional emissions. An analytical dipole model is established, which yields comparable results to those from the full-wave simulation. Furthermore, we show that the wavelength of the peak forward-to-backward unidirectionality is essentially determined by the MD and is approximately predictable by the plasmonic wave dispersion in the corresponding two-dimensional multilayer structure. Our results may be useful to design dual-band unidirectional optical nanoantennas.

3.
Opt Express ; 17(10): 8246-52, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19434157

RESUMO

HfO(2) thin films were deposited by e-beam evaporation, and were post-treated with plasma under different flow rate ratios of argon to oxygen. By measuring the surface defect density, weak absorption, laser-induced damage threshold (LIDT) and damage morphology, the influence of the flow rate ratio of argon to oxygen on the laser-induced damage characters of HfO(2) thin films were analyzed. The experimental results show that plasma treatment is effective in reducing the surface defect density of thin films. Compared with the as-grown sample, the absorption reduction is obvious after plasma treatment when argon and oxygen flow rate ratio is 5:25, but the absorption increases gradually with the continued increase of argon and oxygen flow rate ratio. LIDT measurements in 1-on-1 mode demonstrate that plasma treatment is not effective in improving LIDT of the samples at 355 nm. Damage morphologies reveal that the LIDT is dominated by nanoscale absorbing defects in subsurface layers, which agrees well with our numerical simulation result based on a spherical absorber model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...