Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acad Radiol ; 30(9): 1946-1961, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36567145

RESUMO

RATIONALE AND OBJECTIVES: The novel International Association for the Study of Lung Cancer (IASLC) grading system of invasive lung adenocarcinoma (ADC) demonstrated a remarkable prognostic effect and enabled numerous patients to benefit from adjuvant chemotherapy. We sought to build a CT-based nomogram for preoperative prediction of the IASLC grading. MATERIALS AND METHODS: This work retrospectively analyzed the CT images and clinical data of 303 patients with pathologically confirmed invasive ADC. The histological subtypes and radiological characteristics of the patients were re-evaluated. Radiomics features were extracted, and the optimal subset of features was established by ANOVA, spearman correlation analysis, and the least absolute shrinkage and selection operator (LASSO). Univariate and multivariate analyses identified the independent clinical and radiological variables. Finally, multivariate logistic regression analysis incorporated clinical, radiological, and optimal radiomics features into the nomogram. Receiver operating characteristic (ROC) curve, and accuracy were applied to assess the model's performance. Decision curve analysis (DCA), and calibration curve were applied to assess the clinical usefulness. RESULTS: Nine selected CT image features were used to develop the radiomics model. The accuracy, precision, sensitivity, and specificity of the radiomics model outperformed the clinic-radiological model in the training and testing sets. Integrating Radscore with independent radiological characteristics showed higher prediction performance than clinic-radiological characteristics alone in the training (AUC, 0.915 vs. 0.882; DeLong, p < 0.05) and testing (AUC, 0.838 vs. 0.782; DeLong, p < 0.05) sets. Good calibration and decision curve analysis demonstrated the clinical usefulness of the nomogram. CONCLUSION: Radiomics features effectively predict high-grade ADC. The combined nomogram may facilitate selecting patients who benefit from adjuvant treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Gradação de Tumores , Nomogramas , Tomografia Computadorizada por Raios X , Período Pré-Operatório
2.
JCO Clin Cancer Inform ; 6: e2200010, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696627

RESUMO

PURPOSE: Data quality and standardization remain a challenge when analyzing real-world clinical data. We built a clinical research database, using machine learning and natural learning processing, and investigated factors influencing testosterone recovery (T-recovery) in patients with localized prostate cancer (LPC) after initial androgen deprivation therapy (ADT). METHODS: Medication and treatment-associated dates missing in structured tables were extracted from patient notes using ConceptMapper, an automated data extraction tool, standardized and curated in Sema4 clinical research database. ADT usage duration was evaluated, and T-recovery in patients with LPC was analyzed by the Kaplan-Meier method and multivariable Cox proportional hazards models. We assessed the prognostic value of post-ADT T-recovery with prostate-specific antigen progression-free survival and failure-free survival. RESULTS: In total, 4,125 of 30,832 (13.4%) patients with prostate cancer had medication exclusively from notes with high precision and recall, F1 score ≥ 0.95. Association of dates with medication usage had a F1 score of 0.76. ADT duration estimation had higher accuracy combining information from notes to tables from electronic medical record (70% v 45%). Baseline testosterone was the strongest predictor of T-recovery in these patients. Patients with a baseline testosterone ≥ 300 ng/dL recovered in 9.79 versus 38 months for patients with baseline testosterone < 300 ng/dL (P < .0001). Shorter prostate-specific antigen progression-free interval was observed for patients with T-recovery (≥ 300 ng/dL) at 6 months after ADT cessation compared with patients without T-recovery (< 300 ng/dL; 13.7 v 25.1 months; P = .055). CONCLUSION: We augmented structured electronic medical record data with data extracted from notes and improved the accuracy of medication information for patients. ADT exposure and T-recovery in patients with LPC produced results consistent with the literature and clinical experience and illustrates the power of applying machine learning methods to enhance the quality of real-world evidence in answering clinically relevant questions.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/uso terapêutico , Registros Eletrônicos de Saúde , Humanos , Masculino , Antígeno Prostático Específico/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Testosterona/uso terapêutico
3.
DNA Repair (Amst) ; 87: 102768, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32018112

RESUMO

The packaging of DNA in nucleosomes presents a barrier for biological transactions including replication, transcription and repair. However, despite years of research, how the DNA is freed from the histone proteins and thereby allows the molecular machines to access the DNA remains poorly understood. We are interested in global genomic nucleotide excision repair (GG-NER). It is established that the histones are obstacles to this process, and DNA lesions are repaired less efficiently in nucleosomes than in free DNA. In the present study, we utilized molecular dynamics simulations to elucidate the nature of the distortions and dynamics imposed in the nucleosome by a set of three structually different lesions that vary in GG-NER efficiencies in free DNA, and in nucleosomes [Shafirovich, Geacintov, et. al, 2019]. Two of these are bulky lesions derived from metabolic activation of the environmental carcinogen benzo[a]pyrene, the 10R (+)-cis-anti-B[a]P-N2-dG and the stereoisomeric 10S (+)-trans-anti-B[a]P-N2-dG, which respectively adopt base-displaced/intercalated and minor groove-aligned conformations in DNA. The third is a non-bulky lesion, the 5'R-8-cyclo-2'-deoxyguanosine cross-link, produced by reactive oxygen and nitrogen species; cyclopurine lesions are highly mutagenic. These adducts are placed near the dyad axis, and rotationally with the lesion-containing strand facing towards or away from the histones. While each lesion has distinct conformational characteristics that are retained in the nucleosome, a spectrum of structural and dynamic disturbances, from slight to substantial, are displayed that depend on the lesion's structure and position in the nucleosome. We hypothesize that these intrinsic structural and dynamic distinctions provide different signals to initiate the cascade of chromatin-opening processes, including acetylation and other post translational modifications, remodeling by ATP-dependent complexes and spontaneous unwrapping that regulate the rate of access to the lesion; this may translate ultimately into varying GG-NER efficiencies, including repair resistance when signals for access are too weak.


Assuntos
Dano ao DNA , Reparo do DNA , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Acetilação , Benzo(a)pireno/metabolismo , Desoxiguanosina/metabolismo , Histonas , Simulação de Dinâmica Molecular , Processamento de Proteína Pós-Traducional
4.
Huan Jing Ke Xue ; 40(5): 2122-2131, 2019 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087848

RESUMO

This study was based on one complete hydrological year sampling of precipitation and meteorological data of the Shiyang River Basin in the Wuwei Station (1531 m a.s.l.), Minqin Station (1389 m a.s.l.), and Xidahe Station(2897 m a.s.l.) from July 2013 to July 2014. This paper aims to analyze temporal and spatial variation of stable isotopes in local precipitation, and discuss the impact of environmental factors during precipitation. The stable isotope evolution correlation with temperature, humidity, precipitation, vapor pressure, and average relative humidity is analyzed. The results show that:①During the study period, the stable isotope of precipitation showed significant seasonal changes, lower in the winter and spring, higher in the summer and autumn;②The monthly average D-excess of Wuwei Station is lower than that of Xidahe Station. In addition to the possibility of different water vapor sources, the high-altitude mountain areas are more affected by local recirculating water vapor, and the secondary evaporation under the clouds in low-altitude plain areas is stronger;③The stable isotope of precipitation in the basin shows a significant temperature effect, and the precipitation effect is reflected on the weather scale, which may be affected by leaching or monsoon circulation;④The δ18O value of precipitation is negatively correlated with the average relative humidity. It may be that the secondary evaporation under the cloud is weakened by the increase of precipitation and humidity.

5.
DNA Repair (Amst) ; 65: 73-78, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29631253

RESUMO

How DNA lesions in nucleosomes are recognized for global genome nucleotide excision repair (GG-NER) remains poorly understood, and the roles that histone tails may play remains to be established. Histone H3 and H4 N-terminal tails are of particular interest as their acetylation states are important in regulating nucleosomal functions in transcription, replication and repair. In particular the H3 tail has been the focus of recent attention as a site for the interaction with XPC, the GG-NER lesion recognition factor. Here we have investigated how the structure and dynamics of the DNA lesion cis-B[a]P-dG, derived from the environmental carcinogen benzo[a]pyrene (B[a]P), is impacted by the presence of flanking H3 and H4 tails. This lesion is well-repaired by GG-NER, and adopts a base-displaced/intercalated conformation in which the lesion partner C is displaced into the major groove. We used molecular dynamics simulations to obtain structural and dynamic characterizations for this lesion positioned in nucleosomal DNA so that it is bracketed by the H3 and H4 tails. The H4 tail was studied in unacetylated and acetylated states, while the H3 tail was unacetylated, its state when it binds XPC (Kakumu, Nakanishi et al., 2017). Our results reveal that upon acetylation, the H4 tail is released from the DNA surface; the H3 tail then forms a pocket that induces flipping and capture of the displaced lesion partner base C. This reveals synergistic effects of the behavior of the two tails. We hypothesize that the dual capability of the H3 tail to sense the displaced lesion partner base and to bind XPC could foster recognition of this lesion by XPC for initiation of GG-NER in nucleosomes.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Histonas/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Acetilação , Benzo(a)pireno , DNA/química , Adutos de DNA , Humanos , Processamento de Proteína Pós-Traducional
6.
Biochemistry ; 56(14): 1963-1973, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28304160

RESUMO

Histone tails in nucleosomes play critical roles in regulation of many biological processes, including chromatin compaction, transcription, and DNA repair. Moreover, post-translational modifications, notably lysine acetylation, are crucial to these functions. While the tails have been intensively studied, how the structures and dynamics of tails are impacted by the presence of a nearby bulky DNA lesion is a frontier research area, and how these properties are impacted by tail lysine acetylation remains unexplored. To obtain molecular insight, we have utilized all atom 3 µs molecular dynamics simulations of nucleosome core particles (NCPs) to determine the impact of a nearby DNA lesion, 10S (+)-trans-anti-B[a]P-N2-dG-the major adduct derived from the procarcinogen benzo[a]pyrene-on H2B tail behavior in unacetylated and acetylated states. We similarly studied lesion-free NCPs to investigate the normal properties of the H2B tail in both states. In the lesion-free NCPs, charge neutralization upon lysine acetylation causes release of the tail from the DNA. When the lesion is present, it stably engulfs part of the nearby tail, impairing the interactions between DNA and tail. With the tail in an acetylated state, the lesion still interacts with part of it, although unstably. The lesion's partial entrapment of the tail should hinder the tail from interacting with other nucleosomes, and other proteins such as acetylases, deacetylases, and acetyl-lysine binding proteins, and thus disrupt critical tail-governed processes. Hence, the lesion would impede tail functions modulated by acetylation or deacetylation, causing aberrant chromatin structures and impaired biological transactions such as transcription and DNA repair.


Assuntos
Benzo(a)pireno/química , Reparo do DNA , DNA/química , Histonas/química , Nucleossomos/química , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , DNA/metabolismo , Dano ao DNA , Histonas/metabolismo , Histonas/ultraestrutura , Lisina/química , Lisina/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
7.
Biochemistry ; 55(2): 239-42, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26709619

RESUMO

Errors in epigenetic markings are associated with human diseases, including cancer. We have used molecular dynamics simulations of a nucleosome containing the 10S (+)-trans-anti-B[a]P-N(2)-dG lesion, derived from the environmental pro-carcinogen benzo[a]pyrene, to elucidate the impact of the lesion on the structure and dynamics of a nearby histone N-terminal tail. Our results show that a lysine-containing part of this H2B tail that is subject to post-translational modification is engulfed by the enlarged DNA minor groove imposed by the lesion. The tail entrapment suggests that epigenetic markings could be hampered by this lesion, thereby impacting critical cellular functions, including transcription and repair.


Assuntos
DNA/metabolismo , Epigênese Genética/genética , Histonas/química , Histonas/metabolismo , Simulação de Dinâmica Molecular , Nucleossomos/metabolismo , Humanos , Modelos Biológicos
8.
Biochemistry ; 54(27): 4181-5, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26091016

RESUMO

In nucleosomes, the access of DNA lesions to nucleotide excision repair is hindered by histone proteins. However, evidence that the nature of the DNA lesions may play a role in facilitating access is emerging, but these phenomena are not well-understood. We have used molecular dynamics simulations to elucidate the structural, dynamic, and energetic properties of the R and S 5'-8-cyclo-2'-dG and the (+)-cis-anti-B[a]P-dG lesions in a nucleosome. Our results show that the (+)-cis-anti-B[a]P-dG adduct is more dynamic and more destabilizing than the smaller and more constrained 5',8-cyclo-2'-dG lesions, suggesting more facile access to the more bulky (+)-cis-anti-B[a]P-dG lesion.


Assuntos
Reparo do DNA , Nucleossomos/química , DNA/química , Adutos de DNA/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Termodinâmica
9.
DNA Repair (Amst) ; 19: 55-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24784728

RESUMO

The first eukaryotic NER factor that recognizes NER substrates is the heterodimeric XPC-RAD23B protein. The currently accepted hypothesis is that this protein recognizes the distortions/destabilization caused by DNA lesions rather than the lesions themselves. The resulting XPC-RAD23B-DNA complexes serve as scaffolds for the recruitment of subsequent NER factors that lead to the excision of the oligonucleotide sequences containing the lesions. Based on several well-known examples of DNA lesions like the UV radiation-induced CPD and 6-4 photodimers, as well as cisplatin-derived intrastrand cross-linked lesions, it is generally believed that the differences in excision activities in human cell extracts is correlated with the binding affinities of XPC-RAD23B to these DNA lesions. However, using electrophoretic mobility shift assays, we have found that XPC-RAD23B binding affinities of certain bulky lesions derived from metabolically activated polycyclic aromatic hydrocarbon compounds such as benzo[a]pyrene and dibenzo[a,l]pyrene, are not directly, or necessarily correlated with NER excision activities observed in cell-free extracts. These findings point to features of XPC-RAD23B-bulky DNA adduct complexes that may involve the formation of NER-productive or unproductive forms of binding that depend on the structural and stereochemical properties of the DNA adducts studied. The pronounced differences in NER cleavage efficiencies observed in cell-free extracts may be due to differences in the successful recruitment of subsequent NER factors by the XPC-RAD23B-DNA adduct complexes, and/or in the verification step. These phenomena appear to depend on the structural and conformational properties of the class of bulky DNA adducts studied.


Assuntos
Adutos de DNA/genética , Enzimas Reparadoras do DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Benzopirenos/farmacologia , Cisplatino/farmacologia , Adutos de DNA/biossíntese , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/biossíntese , Enzimas Reparadoras do DNA/química , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/química , Humanos , Conformação de Ácido Nucleico/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos da radiação , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos da radiação , Raios Ultravioleta
10.
Biochemistry ; 53(11): 1827-41, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24617538

RESUMO

The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide-DNA adducts formed include the stereoisomeric 14S and 14R trans-anti-DB[a,l]P-N(2)-dG and the stereochemically analogous 10S- and 10R-B[a]P-N(2)-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N(2)-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N(2)-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5'-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure-function relationship in NER.


Assuntos
Benzopirenos/química , Carcinógenos/química , Adutos de DNA/química , Guanina/química , Espectroscopia de Ressonância Magnética , Sequência de Bases/genética , Cristalografia por Raios X , Adutos de DNA/genética , Humanos , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica , Estereoisomerismo
11.
Nucleic Acids Res ; 42(8): 5020-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24615810

RESUMO

The hydroxyl radical is a powerful oxidant that generates DNA lesions including the stereoisomeric R and S 5',8-cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG) pairs that have been detected in cellular DNA. Unlike some other oxidatively generated DNA lesions, cdG and cdA are repaired by the human nucleotide excision repair (NER) apparatus. The relative NER efficiencies of all four cyclopurines were measured and compared in identical human HeLa cell extracts for the first time under identical conditions, using identical sequence contexts. The cdA and cdG lesions were excised with similar efficiencies, but the efficiencies for both 5'R cyclopurines were greater by a factor of ∼2 than for the 5'S lesions. Molecular modeling and dynamics simulations have revealed structural and energetic origins of this difference in NER-incision efficiencies. These lesions cause greater DNA backbone distortions and dynamics relative to unmodified DNA in 5'R than in 5'S stereoisomers, producing greater impairment in van der Waals stacking interaction energies in the 5'R cases. The locally impaired stacking interaction energies correlate with relative NER incision efficiencies, and explain these results on a structural basis in terms of differences in dynamic perturbations of the DNA backbone imposed by the R and S covalent 5',8 bonds.


Assuntos
Reparo do DNA , Desoxiadenosinas/química , Desoxiguanosina/análogos & derivados , DNA/química , Dano ao DNA , Desoxiguanosina/química , Células HeLa , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Estereoisomerismo
12.
DNA Repair (Amst) ; 13: 55-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24290807

RESUMO

The incorporation of ribonucleotides in DNA has attracted considerable notice in recent years, since the pool of ribonucleotides can exceed that of the deoxyribonucleotides by at least 10-20-fold, and single ribonucleotide incorporation by DNA polymerases appears to be a common event. Moreover ribonucleotides are potentially mutagenic and lead to genome instability. As a consequence, errantly incorporated ribonucleotides are rapidly repaired in a process dependent upon RNase H enzymes. On the other hand, global genomic nucleotide excision repair (NER) in prokaryotes and eukaryotes removes damage caused by covalent modifications that typically distort and destabilize DNA through the production of lesions derived from bulky chemical carcinogens, such as polycyclic aromatic hydrocarbon metabolites, or via crosslinking. However, a recent study challenges this lesion-recognition paradigm. The work of Vaisman et al. (2013) [34] reveals that even a single ribonucleotide embedded in a deoxyribonucleotide duplex is recognized by the bacterial NER machinery in vitro. In their report, the authors show that spontaneous mutagenesis promoted by a steric-gate pol V mutant increases in uvrA, uvrB, or uvrC strains lacking rnhB (encoding RNase HII) and to a greater extent in an NER-deficient strain lacking both RNase HI and RNase HII. Using purified UvrA, UvrB, and UvrC proteins in in vitro assays they show that despite causing little distortion, a single ribonucleotide embedded in a DNA duplex is recognized and doubly-incised by the NER complex. We present the hypothesis to explain the recognition and/or verification of this small lesion, that the critical 2'-OH of the ribonucleotide - with its unique electrostatic and hydrogen bonding properties - may act as a signal through interactions with amino acid residues of the prokaryotic NER complex that are not possible with DNA. Such a mechanism might also be relevant if it were demonstrated that the eukaryotic NER machinery likewise incises an embedded ribonucleotide in DNA.


Assuntos
Reparo do DNA , DNA/metabolismo , Ribonucleotídeos/metabolismo , Sítios de Ligação , DNA/genética , Instabilidade Genômica , Modelos Moleculares , Simulação de Dinâmica Molecular , Ribonuclease H/metabolismo , Ribonucleotídeos/química , Ribonucleotídeos/genética , Especificidade por Substrato
13.
Biochemistry ; 52(33): 5517-21, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23902560

RESUMO

Extensive molecular modeling with molecular dynamics simulations and van der Waals energy analyses were used to elucidate the striking finding that a mutagenic benzo[a]pyrene-derived DNA lesion, the base-displaced intercalated 10R-(+)-cis-anti-B[a]P-N(2)-dG (G*), manifests large differences in nucleotide excision repair (NER) efficiencies in DNA duplexes, which depend on the identities of the partner base opposite G*. The nature of the partner base causes marked differences in the extent of its major groove extrusion and dynamics, as well as energetic stability of the intercalation pocket that parallels the relative NER efficiencies.


Assuntos
Benzopirenos/química , Adutos de DNA/química , Reparo do DNA , DNA/química , Benzopirenos/metabolismo , DNA/genética , DNA/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Nucleotídeos/química , Nucleotídeos/metabolismo , Espectrofotometria Ultravioleta , Termodinâmica
14.
Chem Res Toxicol ; 26(7): 1115-25, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23758590

RESUMO

The crystal structure of Rad4/Rad23, the yeast homolog of the human nucleotide excision repair (NER) lesion recognition factor XPC-RAD23B ( Min , J. H. and Pavletich , N. P. ( 2007 ) Nature 449 , 570 - 575 ) reveals that the lesion-partner base is flipped out of the helix and binds to amino acids of the protein. This suggests the hypothesis that the flipping of this partner base must overcome a free energy barrier, which constitutes one element contributing to changes in the thermodynamic properties induced by the DNA damage and sensed by the recognition protein. We explored this hypothesis by computing complete flipping free energy profiles for two lesions derived from the procarcinogenic polycyclic aromatic hydrocarbons (PAHs), dibenzo[a,l]pyrene (DB[a,l]P) and benzo[a]pyrene (B[a]P), R-trans-anti-DB[a,l]P-N(6)-dA (R-DB[a,l]P-dA) and R-trans-anti-B[a]P-N(6)-dA (R-B[a]P-dA), and the corresponding unmodified duplex. The DB[a,l]P and B[a]P adducts differ in number and organization of their aromatic rings. We integrate these results with prior profiles for the R-trans-anti-DB[a,l]P-dG adduct ( Zheng , H. et al. ( 2010 ) Chem. Res. Toxicol. 23 , 1868 - 1870 ). All adopt conformational themes involving intercalation of the PAH aromatic ring system into the DNA duplex; however, R-DB[a,l]P-dA and R-B[a]P-dA intercalate from the major groove, while R-DB[a,l]P-dG intercalates from the minor groove. These structural differences produce different computed van der Waals stacking interaction energies between the flipping partner base with the lesion aromatic ring system and adjacent bases; we find that the better the stacking, the higher the relative flipping free energy barrier and hence lower flipping probability. The better relative NER susceptibilities correlate with greater ease of flipping in these three differently intercalated lesions. In addition to partner base flipping, the Rad4/Rad23 crystal structure shows that a protein-ß-hairpin, BHD3, intrudes from the major groove side between the DNA strands at the lesion site. We present a molecular modeling study for the R-DB[a,l]P-dG lesion in Rad4/Rad23 showing BHD3 ß-hairpin intrusion with lesion eviction, and we hypothesize that lesion steric effects play a role in the recognition of intercalated adducts.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/química , DNA/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Reparo do DNA/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Termodinâmica
15.
Chem Res Toxicol ; 26(5): 783-93, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23570232

RESUMO

The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N(2)-dG) and adenine (N(6)-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N(2)-dG linkage site is ∼35 times more susceptible to NER dual incisions than the stereochemically identical N(6)-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar but somewhat smaller effect (factor of ∼15) is observed. The striking resistance of the bulky N(6)-dA in contrast to the modest to good susceptibilities of the N(2)-dG adducts to NER is interpreted in terms of the balance between lesion-induced DNA distorting and DNA stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA.


Assuntos
Adenina/química , Benzopirenos/farmacologia , Adutos de DNA/química , Adutos de DNA/efeitos dos fármacos , Reparo do DNA , Guanina/química , Benzopirenos/toxicidade , Células HeLa , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Temperatura
16.
Biochemistry ; 51(48): 9751-62, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23121427

RESUMO

The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.


Assuntos
Pareamento de Bases , Benzopirenos/química , Adutos de DNA/química , Guanina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação de Ácido Nucleico , Simulação de Dinâmica Molecular
17.
Biochemistry ; 51(7): 1486-99, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22242833

RESUMO

The nucleotide excision repair (NER) machinery, the primary defense against cancer-causing bulky DNA lesions, is surprisingly inefficient in recognizing certain mutagenic DNA adducts and other forms of DNA damage. However, the biochemical basis of resistance to repair remains poorly understood. To address this problem, we have investigated a series of intercalated DNA-adenine lesions derived from carcinogenic polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites that differ in their response to the mammalian NER apparatus. These stereoisomeric PAH-derived adenine lesions represent ideal model systems for elucidating the effects of structural, dynamic, and thermodynamic properties that determine the recognition of these bulky DNA lesions by NER factors. The objective of this work was to gain a systematic understanding of the relation between aromatic ring topology and adduct stereochemistry with existing experimental NER efficiencies and known thermodynamic stabilities of the damaged DNA duplexes. For this purpose, we performed 100 ns molecular dynamics studies of the lesions embedded in identical double-stranded 11-mer sequences. Our studies show that, depending on topology and stereochemistry, stabilizing PAH-DNA base van der Waals stacking interactions can compensate for destabilizing distortions caused by these lesions that can, in turn, cause resistance to NER. The results suggest that the balance between helix stabilizing and destabilizing interactions between the adduct and nearby DNA residues can account for the variability of NER efficiencies observed in this class of PAH-DNA lesions.


Assuntos
Carcinógenos/química , Adutos de DNA/química , Reparo do DNA , DNA/química , Nucleotídeos/química , Dano ao DNA , Ligação de Hidrogênio , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Hidrocarbonetos Policíclicos Aromáticos/química , Saccharomyces cerevisiae/metabolismo , Estereoisomerismo , Termodinâmica
18.
Nucleic Acids Res ; 40(6): 2506-17, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22135299

RESUMO

The one-electron oxidation of guanine in DNA by carbonate radical anions, a decomposition product of peroxynitrosocarbonate which is associated with the inflammatory response, can lead to the formation of intrastrand cross-links between guanine and thymine bases [Crean et al. (Oxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines. Nucleic Acids Res. 2008; 36: 742-755.)]. These involve covalent bonds between the C8 positions of guanine (G*) and N3 of thymine (T*) in 5'-d(…G*pT*…) and 5'-d(…G*pCpT*…) sequence contexts. We have performed nucleotide excision repair (NER) experiments in human HeLa cell extracts which show that the G*CT* intrastrand cross-link is excised with approximately four times greater efficiency than the G*T* cross-link embedded in 135-mer DNA duplexes. In addition, thermal melting studies reveal that both lesions significantly destabilize duplex DNA, and that the destabilization induced by the G*CT* cross-link is considerably greater. Consistent with this difference in NER, our computations show that both lesions dynamically distort and destabilize duplex DNA. They disturb Watson-Crick base-pairing and base-stacking interactions, and cause untwisting and minor groove opening. These structural perturbations are much more pronounced in the G*CT* than in the G*T* cross-link. Our combined experimental and computational studies provide structural and thermodynamic understanding of the features of the damaged duplexes that produce the most robust NER response.


Assuntos
Reparo do DNA , DNA/química , Guanina/química , Timina/química , Citosina/química , Dano ao DNA , Células HeLa , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Termodinâmica
19.
DNA Repair (Amst) ; 10(7): 684-96, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21741328

RESUMO

Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of ß-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common ß-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ∼65% of these substrates; the other cases deviate mostly by ∼30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through ß-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.


Assuntos
Adutos de DNA/química , Dano ao DNA , Reparo do DNA , DNA/química , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Imageamento por Ressonância Magnética , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Estereoisomerismo , Especificidade por Substrato , Termodinâmica , Thermotoga maritima/genética
20.
Nucleic Acids Res ; 39(20): 8752-64, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21764772

RESUMO

The molecular basis of resistance to nucleotide excision repair (NER) of certain bulky DNA lesions is poorly understood. To address this issue, we have studied NER in human HeLa cell extracts of two topologically distinct lesions, one derived from benzo[a]pyrene (10R-(+)-cis-anti-B[a]P-N(2)-dG), and one from the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (C8-dG-PhIP), embedded in either full or 'deletion' duplexes (the partner nucleotide opposite the lesion is missing). All lesions adopt base-displaced intercalated conformations. Both full duplexes are thermodynamically destabilized and are excellent substrates of NER. However, the identical 10R-(+)-cis-anti-B[a]P-N(2)-dG adduct in the deletion duplex dramatically enhances the thermal stability of this duplex, and is completely resistant to NER. Molecular dynamics simulations show that B[a]P lesion-induced distortion/destabilization is compensated by stabilizing aromatic ring system-base stacking interactions. In the C8-dG-PhIP-deletion duplex, the smaller size of the aromatic ring system and the mobile phenyl ring are less stabilizing and yield moderate NER efficiency. Thus, a partner nucleotide opposite the lesion is not an absolute requirement for the successful initiation of NER. Our observations are consistent with the hypothesis that carcinogen-base stacking interactions, which contribute to the local DNA stability, can prevent the successful insertion of an XPC ß-hairpin into the duplex and the normal recruitment of other downstream NER factors.


Assuntos
Benzopirenos/química , Adutos de DNA/química , Dano ao DNA , Reparo do DNA , Desoxiguanosina/análogos & derivados , Imidazóis/química , Pareamento de Bases , Desoxiguanosina/química , Células HeLa , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...