Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Comput Graph Appl ; PP2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110563

RESUMO

It is time- and man-power intensive to craft various fish species for underwater animations and games. Even professionals spend hours to days for one. Therefore, we propose Procedural Fish Generation, which presents an innovative and automatic approach to generate 3D fish models with one lateral image. The core lies in parameterizing the ray-finned fish with curves and optimizing them with textures to fit the input using differentiable rendering, greatly reducing the manual modeling work. It presents advantages over multi-image reconstruction in requiring single image, while state-of-the-art methods suffer from such a scenario to achieve informative reconstruction. Also, our method outputs a polygon mesh, widely compatible with modern graphics hardware and software, thus facilitating further editing. Furthermore, we fine tune the prompts for Stable Diffusion while users can type a name to find high-quality lateral images. Extensive ablation studies and comparisons have proved its effectiveness and efficiency for experts and non-experts.

2.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842494

RESUMO

Periodontal diagnosis requires discovery of the relations among teeth, gingiva (i.e., gums), and alveolar bones, but alveolar bones are inside gingiva and not visible for inspection. Traditional probe examination causes pain, and X-ray based examination is not suited for frequent inspection. This work develops an automatic non-invasive periodontal inspection framework based on gum penetrative Optical Coherence Tomography (OCT), which can be frequently applied without high radiation. We sum up interference responses of all penetration depths for all shooting directions respectively to form the shooting amplitude projection. Because the reaching interference strength decays exponentially with tissues' penetration depth, this projection mainly reveals the responses of the top most gingiva or teeth. Since gingiva and teeth have different air-tissue responses, the gumline, revealing itself as an obvious boundary between teeth and gingiva, is the basis line for periodontal inspection. Our system can also automatically identify regions of gingiva, teeth, and alveolar bones from slices of the cross-sectional volume. Although deep networks can successfully and possibly segment noisy maps, reducing the number of manually labeled maps for training is critical for our framework. In order to enhance the effectiveness and efficiency of training and classification, we adjust Snake segmentation to consider neighboring slices in order to locate those regions possibly containing gingiva-teeth and gingiva-alveolar boundaries. Additionally, we also adapt a truncated direct logarithm based on the Snake-segmented region for intensity quantization to emphasize these boundaries for easier identification. Later, the alveolar-gingiva boundary point directly under the gumline is the desired alveolar sample, and we can measure the distance between the gumline and alveolar line for visualization and direct periodontal inspection. At the end, we experimentally verify our choice in intensity quantization and boundary identification against several other algorithms while applying the framework to locate gumline and alveolar line in vivo data successfully.


Assuntos
Gengiva/diagnóstico por imagem , Doenças Periodontais/diagnóstico , Tomografia de Coerência Óptica , Dente/diagnóstico por imagem , Perda do Osso Alveolar/diagnóstico , Perda do Osso Alveolar/diagnóstico por imagem , Humanos , Doenças Periodontais/patologia
3.
J Geriatr Cardiol ; 13(9): 783-788, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27899943

RESUMO

OBJECTIVE: To study the effect of allitridum on the transient outward potassium current (Ito) of ventricular myocytes in heart failure (HF). METHODS: The dual enzymatic method was used to separate single ventricular myocytes from Sprague Dawley rats. Patch-clamping was used to record Ito and analyze the effect of allitridum on the current. RESULTS: The Ito current had a significant decrease in the HF group, compared with the control group. The density of Ito in the HF group was increased after treatment of allitridum (30 µmol/L). The peak current densities of Ito were enhanced in the HF group from 6.01 ± 0.30 pA/pF to 8.41 ± 0.54 pA/pF (P < 0.01) at +50 mV after treatment with allitridum (30 µmol/L). We also determined the effect of allitridum on the gating mechanism of the Ito in the HF group. CONCLUSIONS: We found that allitridum increased the Ito by accelerating the activation of channels and shortened the time constants of inactivation, and allitridum decreased the remodeling of Ito in ventricular myocytes of rats with HF.

4.
J Geriatr Cardiol ; 13(4): 316-25, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27403141

RESUMO

OBJECTIVE: Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). METHODS: The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. RESULTS: The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. CONCLUSIONS: Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.

5.
Yao Xue Xue Bao ; 51(12): 1852-7, 2016 12.
Artigo em Chinês | MEDLINE | ID: mdl-29908537

RESUMO

This study was designed to test the allitridum (All) activity in correction of sodium current decrease caused by SCN5A-F1473S mutation in HEK293 cells. The result may provide a theoretical basis for screening of new drugs in the treatment of Brugada syndrome. We transferred SCN5A-F1473S channel plasmids into HEK293 cells in a transient transfection. All was administrated acutely and chronically using extracellular irrigation flow and co-culture model. The concentration of All was 30 µmol·L(-1). We used whole cell patch clamp technique in voltage clamp mode to record current and gating kinetics. In order to explore the rescue function of All on decreased sodium peak current, we used confocal microscopy and Western blot to detect the expression of channel proteins in the cell membrane. We found a significant increase in sodium peak current of the 30 µmol·L(-1) All HEK293 cells (269.8 ± 16.6 pA/pF, P < 0.01), almost closed to the current density of the control group(298.2 ± 17.5 p A/p F, P < 0.01). All allowed the steady-state inactivation of the channel to move toward a more positive direction (V(1/2, inact) returns to -79.5 ± 2.4 mV, P < 0.01). It also slowed the intermediate state inactivation of the channel (inactivation prolongated to 598.1 ± 22.6 ms, P < 0.01). Meanwhile, All increased distribution and expression of the channel protein in the cell membrane (compared to F1473S, P < 0.01). All caused an increase of current in SCN5A-F1473S mutation cells. We consider that the main mechanism may be related to the reduced channel inactivation by the drug with an improvement of the migration barrier of the mutational channel.


Assuntos
Compostos Alílicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Sódio/fisiologia , Sulfetos/farmacologia , Síndrome de Brugada , Células HEK293 , Humanos , Mutação , Técnicas de Patch-Clamp , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA