Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 346, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937790

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Commun ; 10(1): 4352, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554810

RESUMO

Circadian clock mechanisms have been extensively investigated but the main rate-limiting step that determines circadian period remains unclear. Formation of a stable complex between clock proteins and CK1 is a conserved feature in eukaryotic circadian mechanisms. Here we show that the FRQ-CK1 interaction, but not FRQ stability, correlates with circadian period in Neurospora circadian clock mutants. Mutations that specifically affect the FRQ-CK1 interaction lead to severe alterations in circadian period. The FRQ-CK1 interaction has two roles in the circadian negative feedback loop. First, it determines the FRQ phosphorylation profile, which regulates FRQ stability and also feeds back to either promote or reduce the interaction itself. Second, it determines the efficiency of circadian negative feedback process by mediating FRQ-dependent WC phosphorylation. Our conclusions are further supported by mathematical modeling and in silico experiments. Together, these results suggest that the FRQ-CK1 interaction is a major rate-limiting step in circadian period determination.


Assuntos
Caseína Quinase I/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Neurospora crassa/genética , Caseína Quinase I/metabolismo , Relógios Circadianos/genética , Retroalimentação Fisiológica , Proteínas Fúngicas/metabolismo , Mutação , Neurospora crassa/metabolismo , Fosforilação , Ligação Proteica , Fatores de Tempo
4.
Sci Rep ; 5: 13161, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26267886

RESUMO

Biological systems exhibit numerous oscillatory behaviors from calcium oscillations to circadian rhythms that recur daily. These autonomous oscillators contain complex feedbacks with nonlinear dynamics that enable spontaneous oscillations. The detailed nonlinear dynamics of such systems remains largely unknown. In this paper, we investigate robustness and dynamical differences of five minimal systems that may underlie fundamental molecular processes in biological oscillatory systems. Bifurcation analyses of these five models demonstrate an increase of oscillatory domains with a positive feedback mechanism that incorporates a reversible reaction, and dramatic changes in dynamics with small modifications in the wiring. Furthermore, our parameter sensitivity analysis and stochastic simulations reveal different rankings of hierarchy of period robustness that are determined by the number of sensitive parameters or network topology. In addition, systems with autocatalytic positive feedback loop are shown to be more robust than those with positive feedback via inhibitory degradation regardless of noise type. We demonstrate that robustness has to be comprehensively assessed with both parameter sensitivity analysis and stochastic simulations.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Animais , Simulação por Computador , Retroalimentação Fisiológica , Meia-Vida , Humanos , Modelos Biológicos , Dinâmica não Linear , Processos Estocásticos
5.
Osong Public Health Res Perspect ; 5(1): 3-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24955306

RESUMO

OBJECTIVES: Mathematical models can be helpful to understand the complex dynamics of human immunodeficiency virus infection within a host. Most of work has studied the interactions of host responses and virus in the presence of active cytotoxic immune cells, which decay to zero when there is no virus. However, recent research highlights that cytotoxic immune cells can be inactive but never be depleted. METHODS: We propose a mathematical model to investigate the human immunodeficiency virus dynamics in the presence of both active and inactive cytotoxic immune cells within a host. We explore the impact of the immune responses on the dynamics of human immunodeficiency virus infection under different disease stages. RESULTS: Standard mathematical and numerical analyses are presented for this new model. Specifically, the basic reproduction number is computed and local and global stability analyses are discussed. CONCLUSION: Our results can give helpful insights when designing more effective drug schedules in the presence of active and inactive immune responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...