Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Nutr Metab ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531323

RESUMO

Introduction Two large neutral amino acids (LNAA), tryptophan and tyrosine, are precursors to cerebral neurotransmitters and are involved in cognitive function. Higher levels of LNAA in young adults are associated with improved cognition, although these associations appear to reverse over time. Given that exposure to metabolic syndrome (MetS) may induce premature cognitive aging, the current project aims to fill the gap in the literature by examining the effect of LNAA on cognitive performance in midlife adults with metabolic risks. Methods Eighty-eight adults, ages 40-61 years, participated in this cross-sectional study. LNAA metabolites were quantified, MetS components were measured using high-performance liquid chromatography, and MetS components were assessed in the laboratory. Composite verbal memory and executive functioning scores were computed using principal component analysis. We used linear regression models to test the interaction between LNAA and MetS while covarying for sex, age, and education. Results The kynurenine/tryptophan ratio (KTR) moderated the relation between MetS and verbal memory, even after adjusting for relevant covariates. Tyrosine metabolites were not significant moderators of the association between MetS and executive functioning. Conclusion Our findings suggest that the detected weaker memory performance in adults with a high number of MetS components may be related to relative tryptophan depletion and possible decreases in serotonin production. Further investigation is warranted to examine the potential role of LNAA in associations between cognitive performance and metabolic risks over time.

2.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38410466

RESUMO

This investigation delves into the interplay between large neutral amino acids (LNAA) and metabolic syndrome (MetS) in midlife adults, examining their collective influence on brain structure and cognitive function. While LNAA, such as tryptophan and phenylalanine, are known to bolster cognition in youth, our study hypothesizes a reversal of these benefits in older adults with MetS, potentially signaling premature cognitive aging. Eighty participants between 40-61 years underwent MetS component quantification, LNAA measurement via high-performance liquid chromatography, and brain imaging to evaluate white matter hyperintensity (WMH) volume and medial temporal lobe (MTL) cortical thickness. Our linear regression analysis, adjusting for sex, age, and education, revealed that phenylalanine levels moderated the relationship between MetS and WMH volume (F(6, 69) = 3.134, p < 0.05, R2 = 0.214), suggesting that MetS's cognitive impact may be partly due to phenylalanine catabolism byproducts. However, LNAA metabolites did not significantly modulate the MetS-MTL cortical thickness relationship. The findings suggest that LNAA metabolic dysregulation, marked by elevated levels in the presence of MetS, could correlate with brain structural compromises, particularly in the form of MTL cortical thinning and increased WMH load, detectable in midlife. This nuanced understanding of LNAA's role in cognitive health amid cardiovascular risk factors is pivotal, proposing a potential biomarker for early intervention. Further research is crucial to elucidate the longitudinal influence of LNAA and MetS on brain health, thereby informing strategies to mitigate cognitive decline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...