Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nano Lett ; 22(6): 2285-2292, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35271292

RESUMO

Fine control over material synthesis on the nanoscale can facilitate the stabilization of competing crystalline structures. Here, we demonstrate how carbon nanotube reaction vessels can be used to selectively create one-dimensional TaTe3 chains or two-dimensional TaTe2 nanoribbons with exquisite control of the chain number or nanoribbon thickness and width. Transmission electron microscopy and scanning transmission electron microscopy reveal the detailed atomic structure of the encapsulated materials. Complex superstructures such as multichain spiraling and apparent multilayer moirés are observed. The rare 2H phase of TaTe2 (1H in monolayer) is found to be abundant as an encapsulated nanoribbon inside carbon nanotubes. The experimental results are complemented by density functional theory calculations for the atomic and electronic structure, which uncovers the prevalence of 2H-TaTe2 due to nanotube-to-nanoribbon charge transfer and size confinement. Calculations also reveal new 1T' type charge density wave phases in TaTe2 that could be observed in experimental studies.


Assuntos
Nanotubos de Carbono , Eletrônica , Nanotubos de Carbono/química
2.
ACS Nano ; 15(11): 18297-18304, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34739204

RESUMO

Metallic transition-metal dichalcogenides (TMDs) are rich material systems in which the interplay between strong electron-electron and electron-phonon interactions often results in a variety of collective electronic states, such as charge density waves (CDWs) and superconductivity. While most metallic group V TMDs exhibit coexisting superconducting and CDW phases, 2H-NbS2 stands out with no charge ordering. Further, due to strong interlayer interaction, the preparation of ultrathin samples of 2H-NbS2 has been challenging, limiting the exploration of presumably rich quantum phenomena in reduced dimensionality. Here, we demonstrate experimentally and theoretically that light substitutional doping of NbS2 with heavy atoms is an effective approach to modify both interlayer interaction and collective electronic states in NbS2. Very low concentrations of Re dopants (<1%) make NbS2 exfoliable (down to monolayer) while maintaining its 2H crystal structure and superconducting behavior. In addition, first-principles calculations suggest that Re dopants can stabilize some native CDW patterns that are not stable in pristine NbS2.

3.
Nano Lett ; 21(7): 3211-3217, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33818102

RESUMO

Imposing additional confinement in two-dimensional (2D) materials yields further control over their electronic, optical, and topological properties. However, synthesis of ultranarrow nanoribbons (NRs) remains challenging, particularly for transition metal dichalcogenides (TMDs), and synthesizing TMD NRs narrower than 50 nm has remained elusive. Here, we report the vapor-phase synthesis of ultranarrow TaS2 NRs. The NRs are grown within carbon nanotubes, limiting their width and layer number, while stabilizing them against the environment. The NRs reach monolayer thickness and exhibit widths down to 2.5 nm. Atomic-resolution scanning transmission electron microscopy reveals the detailed atomic structure of the ultranarrow NRs and we observe a hitherto unseen atomic structure supermodulation of ordered defect arrays within the NRs. Density functional theory calculations show the presence of flat bands and boundary-localized states, and help identify the atomic configuration of the supermodulation. Nanotube-templated synthesis represents a unique, transferable, and broadly deployable route toward ultranarrow TMD NR growth.

4.
J Am Chem Soc ; 143(12): 4563-4568, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33258601

RESUMO

The structure of MX3 transition metal trichalcogenides (TMTs, with M a transition metal and X a chalcogen) is typified by one-dimensional (1D) chains weakly bound together via van der Waals interactions. This structural motif is common across a range of M and X atoms (e.g., NbSe3, HfTe3,TaS3), but not all M and X combinations are stable. We report here that three new members of the MX3 family which are not stable in bulk, specifically NbTe3, VTe3, and TiTe3, can be synthesized in the few- (2-4) to single-chain limit via nanoconfined growth within the stabilizing cavity of multiwalled carbon nanotubes. Transmission electron microscopy (TEM) and atomic-resolution scanning transmission electron microscopy (STEM) reveal the chain-like nature and the detailed atomic structure. The synthesized materials exhibit behavior unique to few-chain quasi-1D structures, such as few-chain spiraling and a trigonal antiprismatic rocking distortion in the single-chain limit. Density functional theory (DFT) calculations provide insight into the crystal structure and stability of the materials, as well as their electronic structure.

5.
Proc Natl Acad Sci U S A ; 117(42): 26135-26140, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020263

RESUMO

The electronic and topological properties of materials are derived from the interplay between crystalline symmetry and dimensionality. Simultaneously introducing "forbidden" symmetries via quasiperiodic ordering with low dimensionality into a material system promises the emergence of new physical phenomena. Here, we isolate a two-dimensional (2D) chalcogenide quasicrystal and approximant, and investigate their electronic and topological properties. The 2D layers of the materials with a composition close to Ta1.6Te, derived from a layered transition metal dichalcogenide, are isolated with standard exfoliation techniques, and investigated with electron diffraction and atomic resolution scanning transmission electron microscopy. Density functional theory calculations and symmetry analysis of the large unit cell crystalline approximant of the quasicrystal, Ta21Te13, reveal the presence of symmetry-protected nodal crossings in the quasicrystalline and approximant phases, whose presence is tunable by layer number. Our study provides a platform for the exploration of physics in quasicrystalline, low-dimensional materials and the interconnected nature of topology, dimensionality, and symmetry in electronic systems.

6.
Nano Lett ; 20(8): 6120-6127, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32680428

RESUMO

The development of room-temperature sensing devices for detecting small concentrations of molecular species is imperative for a wide range of low-power sensor applications. We demonstrate a room-temperature, highly sensitive, selective, stable, and reversible chemical sensor based on a monolayer of the transition-metal dichalcogenide Re0.5Nb0.5S2. The sensing device exhibits a thickness-dependent carrier type, and upon exposure to NO2 molecules, its electrical resistance considerably increases or decreases depending on the layer number. The sensor is selective to NO2 with only minimal response to other gases such as NH3, CH2O, and CO2. In the presence of humidity, not only are the sensing properties not deteriorated but also the monolayer sensor shows complete reversibility with fast recovery at room temperature. We present a theoretical analysis of the sensing platform and identify the atomically sensitive transduction mechanism.


Assuntos
Gases , Dióxido de Nitrogênio , Umidade , Temperatura
7.
Phys Rev Lett ; 124(20): 206403, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501077

RESUMO

The synthesis of new materials with novel or useful properties is one of the most important drivers in the fields of condensed matter physics and materials science. Discoveries of this kind are especially significant when they point to promising future basic research and applications. van der Waals bonded materials comprised of lower-dimensional building blocks have been shown to exhibit emergent properties when isolated in an atomically thin form [1-8]. Here, we report the discovery of a transition metal chalcogenide in a heretofore unknown segmented linear chain form, where basic building blocks each consisting of two hafnium atoms and nine tellurium atoms (Hf_{2}Te_{9}) are van der Waals bonded end to end. First-principle calculations based on density functional theory reveal striking crystal-symmetry-related features in the electronic structure of the segmented chain, including giant spin splitting and nontrivial topological phases of selected energy band states. Atomic-resolution scanning transmission electron microscopy reveals single segmented Hf_{2}Te_{9} chains isolated within the hollow cores of carbon nanotubes, with a structure consistent with theoretical predictions. van der Waals bonded segmented linear chain transition metal chalcogenide materials could open up new opportunities in low-dimensional, gate-tunable, magnetic, and topological crystalline systems.

8.
Phys Rev Lett ; 124(9): 096101, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202855

RESUMO

Frustrated interactions can lead to short-range ordering arising from incompatible interactions of fundamental physical quantities with the underlying lattice. The simplest example is the triangular lattice of spins with antiferromagnetic interactions, where the nearest-neighbor spin-spin interactions cannot simultaneously be energy minimized. Here we show that engineering frustrated interactions is a possible route for controlling structural and electronic phenomena in semiconductor alloys. Using aberration-corrected scanning transmission electron microscopy in conjunction with density functional theory calculations, we demonstrate atomic ordering in a two-dimensional semiconductor alloy as a result of the competition between geometrical constraints and nearest-neighbor interactions. Statistical analyses uncover the presence of short-range ordering in the lattice. In addition, we show how the induced ordering can be used as another degree of freedom to considerably modify the band gap of monolayer semiconductor alloys.

9.
ACS Nano ; 13(11): 12385-12392, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31593435

RESUMO

The self-assembly of nanoscale materials at the liquid-liquid interface allows for fabrication of three-dimensionally structured liquids with nearly arbitrary geometries and tailored electronic, optical, and magnetic properties. Two-dimensional (2D) materials are highly anisotropic, with thicknesses on the order of a nanometer and lateral dimensions upward of hundreds of nanometers to micrometers. Controlling the assembly of these materials has direct implications for their properties and performance. We here describe the interfacial assembly and jamming of Ti3C2Tx MXene nanosheets at the oil-water interface. Planar, as well as complex, programmed three-dimensional all-liquid objects are realized. Our approach presents potential for the creation of all-liquid 3D-printed devices for possible applications in all-liquid electrochemical and energy storage devices and electrically active, all-liquid fluidics that exploits the versatile structure, functionality, and reconfigurability of liquids.

10.
Nano Lett ; 18(5): 2990-2998, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29678116

RESUMO

Understanding the electronic transport of monolayer transition metal dichalcogenides (TMDs) and their heterostructures is complicated by the difficulty in achieving electrical contacts that do not perturb the material. Typically, metal deposition on monolayer TMDs leads to hybridization between the TMD and the metal, which produces Schottky barriers at the metal/semiconductor interface. In this work, we apply the recently reported hexagonal boron nitride (h-BN) tunnel contact scheme to probe the junction characteristics of a lateral TMD heterostructure grown via chemical vapor deposition. We first measure the electronic properties across the junction before elucidating optoelectronic generation mechanisms via scanning photocurrent microscopy. We find that the rectification ratio measured using the encapsulated, tunnel contact scheme is almost 2 orders of magnitude smaller than that observed via conventional metal contact geometry, which implies that the metal/semiconductor Schottky barriers play large roles in this aspect. Furthermore, we find that both the photovoltaic as well as hot carrier generation effects are dominant mechanisms driving photoresponse, depending on the external biasing conditions. This work is the first time that this encapsulation scheme has been applied to lateral heterostructures and serves as a reference for future electronic measurements on this material. It also simultaneously serves as a framework to more accurately assess the electronic transport characteristics of 2D heterostructures and better inform future device architectures.

11.
ACS Nano ; 11(10): 10321-10329, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28933819

RESUMO

Integrating plasmonic materials into semiconductor media provides a promising approach for applications such as photosensing and solar energy conversion. The resulting structures introduce enhanced light-matter interactions, additional charge trap states, and efficient charge-transfer pathways for light-harvesting devices, especially when an intimate interface is built between the plasmonic nanostructure and semiconductor. Herein, we report the development of plasmonic photodetectors using Au@MoS2 heterostructures-an Au nanoparticle core that is encapsulated by a CVD-grown multilayer MoS2 shell, which perfectly realizes the intimate and direct interfacing of Au and MoS2. We explored their favorable applications in different types of photosensing devices. The first involves the development of a large-area interdigitated field-effect phototransistor, which shows a photoresponsivity ∼10 times higher than that of planar MoS2 transistors. The other type of device geometry is a Si-supported Au@MoS2 heterojunction gateless photodiode. We demonstrated its superior photoresponse and recovery ability, with a photoresponsivity as high as 22.3 A/W, which is beyond the most distinguished values of previously reported similar gateless photodetectors. The improvement of photosensing performance can be a combined result of multiple factors, including enhanced light absorption, creation of more trap states, and, possibly, the formation of interfacial charge-transfer transition, benefiting from the intimate connection of Au and MoS2.

12.
ACS Appl Mater Interfaces ; 9(17): 15044-15051, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28393525

RESUMO

Transition metal dichalcogenide semiconductors hold great promise in photonic and optoelectronic applications, such as flexible solar cells and ultrafast photodetectors, because of their direct band gap and few-atom thicknesses. However, it is crucial to understand and improve the absorption characteristics of these monolayer semiconducting materials. In this study, we conducted a systematic numerical and experimental investigation to demonstrate and quantify absorption enhancement in WS2 monolayer films, in the presence of silver plasmonic nanodisk arrays. Our analysis combining full-field electromagnetic simulations and optical absorption spectroscopy measurements indicates a fourfold enhancement in the absorption of an WS2 film near its band edge, close to the plasmonic resonance wavelength of Ag nanodisk arrays. The proposed Ag/WS2 heterostructure exhibited a 2.5-fold enhancement in calculated short-circuit current. Such hybrid plasmonic or two-dimensional (2D) materials with enhanced absorption pave the way for the practical realization of 2D optoelectronic devices, including ultrafast photodetectors and solar cells.

13.
Nano Lett ; 16(12): 7696-7702, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27782405

RESUMO

There are emerging opportunities to harness diverse and complex geometric architectures based on nominal two-dimensional atomically layered structures. Herein we report synthesis and properties of a new core-shell heterostructure, termed Au@MoS2, where the Au nanoparticle is snugly and contiguously encapsulated by few shells of MoS2 atomic layers. The heterostructures were synthesized by direct growth of multilayer fullerene-like MoS2 shell on Au nanoparticle cores. The Au@MoS2 heterostructures exhibit interesting light-matter interactions due to the structural curvature of MoS2 shell and the plasmonic effect from the underlying Au nanoparticle core. We observed significantly enhanced Raman scattering and photoluminescence emission on these heterostructures. We attribute these enhancements to the surface plasmon-induced electric field, which simulations show to mainly localize within the MoS2 shell. We also found potential evidence for the charge transfer-induced doping effect on the MoS2 shell. The DFT calculations further reveal that the structural curvature of MoS2 shell results in a modification of its electronic structure, which may facilitate the charge transfer from MoS2 to Au. Such Au@MoS2 core-shell heterostructures have the potential for future optoelectronic devices, optical imaging, and other energy-environmental applications.

14.
ACS Nano ; 10(5): 5440-5, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27138735

RESUMO

Due to their unique optoelectronic properties and potential for next generation devices, monolayer transition metal dichalcogenides (TMDs) have attracted a great deal of interest since the first observation of monolayer MoS2 a few years ago. While initially isolated in monolayer form by mechanical exfoliation, the field has evolved to more sophisticated methods capable of direct growth of large-area monolayer TMDs. Chemical vapor deposition (CVD) is the technique used most prominently throughout the literature and is based on the sulfurization of transition metal oxide precursors. CVD-grown monolayers exhibit excellent quality, and this process is widely used in studies ranging from the fundamental to the applied. However, little is known about the specifics of the nucleation and growth mechanisms occurring during the CVD process. In this study, we have investigated the nucleation centers or "seeds" from which monolayer TMDs typically grow. This was accomplished using aberration-corrected scanning transmission electron microscopy to analyze the structure and composition of the nuclei present in CVD-grown MoS2-MoSe2 alloys. We find that monolayer growth proceeds from nominally oxi-chalcogenide nanoparticles which act as heterogeneous nucleation sites for monolayer growth. The oxi-chalcogenide nanoparticles are typically encased in a fullerene-like shell made of the TMD. Using this information, we propose a step-by-step nucleation and growth mechanism for monolayer TMDs. Understanding this mechanism may pave the way for precise control over the synthesis of 2D materials, heterostructures, and related complexes.

15.
ACS Nano ; 8(10): 10851-7, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25233478

RESUMO

The palette of two-dimensional materials has expanded beyond graphene in recent years to include the chalcogenides among other systems. However, there is a considerable paucity of methods for controlled synthesis of mono- and/or few-layer two-dimensional materials with desirable quality, reproducibility, and generality. Here we show a facile top-down synthesis approach for ultrathin layers of 2D materials down to monolayer. Our method is based on controlled evaporative thinning of initially large sheets, as deposited by vapor mass-transport. Rather than optimizing conditions for monolayer deposition, our approach makes use of selective evaporation of thick sheets to control the eventual thickness, down to a monolayer, a process which appears to be self-stopping. As a result, 2D sheets with high yield, high reproducibility, and excellent quality can be generated with large (>10 µm) and thin (∼ 1-2 nm) dimensions. Evaporative thinning promises to greatly reduce the difficulty involved in isolating large, mono- and few-layers of 2D materials for subsequent studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...