Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224498

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.


Assuntos
Esclerose Lateral Amiotrófica , Medula Cervical , Efrina-B2 , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/patologia , Astrócitos/metabolismo , Medula Cervical/metabolismo , Medula Cervical/patologia , Diafragma/inervação , Modelos Animais de Doenças , Efrina-B2/genética , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
2.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37215009

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1-G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.

3.
Nat Commun ; 13(1): 920, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177616

RESUMO

Heterotetrameric glutamate receptors are essential for the development, function, and plasticity of spine synapses but how they are organized to achieve this is not known. Here we show that the nanoscale organization of glutamate receptors containing specific subunits define distinct subsynaptic features. Glutamate receptors containing GluA2 or GluN1 subunits establish nanomodular elements precisely positioned relative to Synaptotagmin-1 positive presynaptic release sites that scale with spine size. Glutamate receptors containing GluA1 or GluN2B specify features that exhibit flexibility: GluA1-subunit containing AMPARs are found in larger spines, while GluN2B-subunit containing NMDARs are enriched in the smallest spines with neither following a strict modular organization. Given that the precise positioning of distinct classes of glutamate receptors is linked to diverse events including cell death and synaptic plasticity, this unexpectedly robust synaptic nanoarchitecture provides a resilient system, where nanopositioned glutamate receptor heterotetramers define specific subsynaptic regions of individual spine synapses.


Assuntos
Espinhas Dendríticas/metabolismo , Subunidades Proteicas/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Córtex Cerebral , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores , Plasticidade Neuronal , Cultura Primária de Células , Multimerização Proteica , Ratos
4.
Dev Cogn Neurosci ; 1(4): 552-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21927630

RESUMO

Adolescent rats show immaturities in executive function and are less able than adult rats to learn reinforcement reversals and shift attentional set. These two forms of executive function rely on the functional integrity of the orbitofrontal and prelimbic cortices respectively. Drugs used to treat attention deficit disorder, such as atomoxetine, that increase cortical catecholamine levels improve executive functions in humans, non-human primates and adult rats with prefrontal lesions. Cortical noradrenergic systems are some of the last to mature in primates and rats. Moreover, norepinephrine transporters (NET) are higher in juvenile rats than adults. The underdeveloped cortical noradrenergic system and higher number of NET are hypothesized to underlie the immaturities in executive function found in adolescents. We assessed executive function in male Long-Evans rats using an intra-dimensional/extradimensional set shifting task. We administered the NET blocker, atomoxetine (0.0, 0.1, 0.9 mg/kg/ml; i.p.), prior to the test of attentional set shift and a reinforcement reversal. The lowest dose of drug facilitated attentional set shifting but had no effect on reversal learning. These data demonstrate that NET blockade allows adolescent rats to more easily perform attentional set shifting.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Atenção/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Propilaminas/farmacologia , Fatores Etários , Animais , Cloridrato de Atomoxetina , Atenção/fisiologia , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...