Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(9): 3155-3164, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425511

RESUMO

Jahn-Teller (JT) distorted CuII-containing compounds often display interesting structural and functional behaviour upon compression. We use high-pressure X-ray and neutron diffraction to investigate four JT-distorted Prussian blue analogues: Cu[Co(CN)6]0.67, CuPt(CN)6, and ACuCo(CN)6 (A = Rb, Cs), where the first two were studied in both their hydrated and dehydrated forms. All compounds are less compressible than the JT-inactive MnII-based counterparts, indicating a coupling between the electronic and mechanical properties. The effect is particularly strong for Cu[Co(CN)6]0.67, where the local JT distortions are uncorrelated (so-called orbital disorder). This sample amorphises at 0.5 GPa when dehydrated. CuPt(CN)6 behaves similarly to the MnII-analogues, with phase transitions at around 1 GPa and low sensitivity to water. For ACuCo(CN)6, the JT distortions reduce the propensity for phase transitions, although RbCuCo(CN)6 transitions to a new phase (P2/m) around 3 GPa. Our results have a bearing on both the topical Prussian blue analogues and the wider field of flexible frameworks.

2.
Chem Commun (Camb) ; 60(24): 3271-3274, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38420859

RESUMO

Extended framework materials with specific topologies can exhibit unusual mechanical behaviour, such as expanding in one direction under hydrostatic (uniform) pressure, known as negative linear compressibility (NLC). Here, two hybrid perovskite frameworks with winerack structures, a known NLC topology, are investigated under pressure. [C(NH2)3]Er(HCO2)2(C2O4) exhibits NLC from ambient pressure to 2.63(10) GPa and is the first reported NLC hybrid perovskite from ambient pressure. However, isostructural [(CH3)2NH2]Er(HCO2)2(C2O4) instead compresses relatively moderately along all axes before it undergoes a phase transition above 0.37(10) GPa. The differences in the mechanical properties can be interpreted from differences in host-guest interactions within these frameworks, primarily their hydrogen bond networks.

3.
Phys Chem Chem Phys ; 24(46): 28444-28456, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36399064

RESUMO

X-ray characterisation methods have undoubtedly enabled cutting-edge advances in all aspects of materials research. Despite the enormous breadth of information that can be extracted from these techniques, the challenge of radiation-induced sample change and damage remains prevalent. This is largely due to the emergence of modern, high-intensity X-ray source technologies and the growing potential to carry out more complex, longer duration in situ or in operando studies. The tunability of synchrotron beamlines enables the routine application of photon energy-dependent experiments. This work explores the structural stability of [Rh(COD)Cl]2, a widely used catalyst and precursor in the chemical industry, across a range of beamline parameters that target X-ray energies of 8 keV, 15 keV, 18 keV and 25 keV, on a powder X-ray diffraction synchrotron beamline at room temperature. Structural changes are discussed with respect to absorbed X-ray dose at each experimental setting associated with the respective photon energy. In addition, the X-ray radiation hardness of the catalyst is discussed, by utilising the diffraction data collected at the different energies to determine a dose limit, which is often considered in protein crystallography and typically overlooked in small molecule crystallography. This work not only gives fundamental insight into how damage manifests in this organometallic catalyst, but will encourage careful consideration of experimental X-ray parameters before conducting diffraction on similar radiation-sensitive organometallic materials.


Assuntos
Fótons , Síncrotrons , Raios X , Cristalografia , Difração de Raios X
4.
Phys Chem Chem Phys ; 24(41): 25072-25076, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36227089

RESUMO

The Prussian blue analogue CsMnCo(CN)6 is studied using powder X-ray and neutron diffraction under variable temperature, pressure, and X-ray exposure. It retains cubic F4̄3m symmetry in the range 85-500 K with minimal thermal expansion, whereas a phase transition to P4̄n2 occurs at ∼2 GPa, driven by octahedral tilting. A small lattice contraction occurs upon increased X-ray dose. Comparisons with related systems indicate that the CsI ions decrease the thermal expansion and suppress the likelihood of phase transformations. The results improve the understanding of the stimuli-responsive behaviour of coordination polymers.

5.
J Phys Chem A ; 125(34): 7473-7488, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34420303

RESUMO

X-ray characterization techniques are invaluable for probing material characteristics and properties, and have been instrumental in discoveries across materials research. However, there is a current lack of understanding of how X-ray-induced effects manifest in small molecular crystals. This is of particular concern as new X-ray sources with ever-increasing brilliance are developed. In this paper, systematic studies of X-ray-matter interactions are reported on two industrially important catalysts, [Ir(COD)Cl]2 and [Rh(COD)Cl]2, exposed to radiation in X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) experiments. From these complementary techniques, changes to structure, chemical environments, and electronic structure are observed as a function of X-ray exposure, allowing comparisons of stability to be made between the two catalysts. Radiation dose is estimated using recent developments to the RADDOSE-3D software for small molecules and applied to powder XRD and XPS experiments. Further insights into the electronic structure of the catalysts and changes occurring as a result of the irradiation are drawn from density functional theory (DFT). The techniques combined here offer much needed insight into the X-ray-induced effects in transition-metal catalysts and, consequently, their intrinsic stabilities. There is enormous potential to extend the application of these methods to other small molecular systems of scientific or industrial relevance.

6.
J Am Chem Soc ; 143(9): 3544-3554, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629831

RESUMO

The vast compositional space of Prussian blue analogues (PBAs), formula AxM[M'(CN)6]y·nH2O, allows for a diverse range of functionality. Yet, the interplay between composition and physical properties-e.g., flexibility and propensity for phase transitions-is still largely unknown, despite its fundamental and industrial relevance. Here we use variable-pressure X-ray and neutron diffraction to explore how key structural features, i.e., defects, hydration, and composition, influence the compressibility and phase behavior of PBAs. Defects enhance the flexibility, manifesting as a remarkably low bulk modulus (B0 ≈ 6 GPa) for defective PBAs. Interstitial water increases B0 and enables a pressure-induced phase transition in defective systems. Conversely, hydration does not alter the compressibility of stoichiometric MnPt(CN)6, but changes the high-pressure phase transitions, suggesting an interplay between low-energy distortions. AMnCo(CN)6 (AI = Rb, Cs) transition from F4̅3m to P4̅n2 upon compression due to octahedral tilting, and the critical pressure can be tuned by the A-site cation. At 1 GPa, the symmetry of Rb0.87Mn[Co(CN)6]0.91 is further lowered to the polar space group Pn by an improper ferroelectric mechanism. These fundamental insights aim to facilitate the rational design of PBAs for applications within a wide range of fields.

7.
Dalton Trans ; 49(37): 12940-12944, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32662482

RESUMO

The spin state of the Prussian blue analogue FeIIPtIV(CN)6 is investigated in response to temperature, pressure, and X-ray irradiation. While cooling to 10 K maintains the high-spin state of FeII, compression at ambient temperature induces a first-order spin-crossover (SCO) transition with a small hysteresis loop (p↑ = 0.8 GPa, p↓ = 0.6 GPa). In addition, the high-spin to low-spin transition can be initiated at lower pressure through increased X-ray irradiation. Our study highlights a cooperative SCO with moderate pressure in a porous Prussian blue analogue.

8.
J Phys Chem C Nanomater Interfaces ; 124(12): 6896-6906, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32256928

RESUMO

The negative thermal expansion material potassium cadmium dicyanoargentate, KCd[Ag(CN)2]3, is studied at high pressure using a combination of X-ray single-crystal diffraction, X-ray powder diffraction, infrared and Raman spectroscopy, and density functional theory calculations. In common with the isostructural manganese analogue, KMn[Ag(CN)2]3, this material is shown to exhibit very strong negative linear compressibility (NLC) in the crystallographic c direction due to structure hinging. We find increased structural flexibility results in enhanced NLC and NTE properties, but this also leads to two pressure-induced phase transitions-to very large unit cells involving octahedral tilting and shearing of the structure-below 2 GPa. The presence of potassium cations has an important effect on the mechanical and thermodynamic properties of this family, while the chemical versatility demonstrated here is of considerable interest to tune unusual mechanical properties for application.

9.
Molecules ; 24(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759754

RESUMO

The roles of organic additives in the assembly and crystallisation of zeolites are still not fully understood. This is important when attempting to prepare novel frameworks to produce new zeolites. We consider 18-crown-6 ether (18C6) as an additive, which has previously been shown to differentiate between the zeolite EMC-2 (EMT) and faujasite (FAU) frameworks. However, it is unclear whether this distinction is dictated by influences on the metastable free-energy landscape or geometric templating. Using high-pressure synchrotron X-ray diffraction, we have observed that the presence of 18C6 does not impact the EMT framework flexibility-agreeing with our previous geometric simulations and suggesting that 18C6 does not behave as a geometric template. This was further studied by computational modelling using solid-state density-functional theory and lattice dynamics calculations. It is shown that the lattice energy of FAU is lower than EMT, but is strongly impacted by the presence of solvent/guest molecules in the framework. Furthermore, the EMT topology possesses a greater vibrational entropy and is stabilised by free energy at a finite temperature. Overall, these findings demonstrate that the role of the 18C6 additive is to influence the free energy of crystallisation to assemble the EMT framework as opposed to FAU.


Assuntos
Zeolitas/química , Éteres de Coroa/química , Cristalização/métodos , Pressão , Temperatura , Difração de Raios X/métodos
10.
Dalton Trans ; 48(5): 1647-1655, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30548036

RESUMO

We report a high-pressure crystallographic study of four hydrated Prussian blue analogues: M[Pt(CN)6] and M[Co(CN)6]0.67 (M = Mn2+, Cu2+) in the range 0-3 GPa. Mn[Co(CN)6]0.67 was studied by single-crystal X-ray diffraction, whereas the other systems were only available in polycrystalline form. The Mn-containing compounds undergo pressure-induced phase transitions from Fm3[combining macron]m to R3[combining macron] at ∼1.0-1.5 GPa driven by cooperative tilting of the octahedral units. No phase transition was found for the orbitally disordered Cu[Co(CN)6]0.67 up to 3 GPa. Mn[Co(CN)6]0.67 is significantly softer than the other samples, with a bulk modulus of ∼14 GPa compared to ∼35 GPa of the powdered samples. The discrepant pressure responses are discussed in terms of the presence of structural defects, Jahn-Teller distortions, and hydration. The implications for the development of polar systems are reviewed based upon our high-pressure study.

11.
Chem Commun (Camb) ; 54(75): 10554-10557, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30132470

RESUMO

Black phosphorus was studied by state-of-the-art synchrotron X-ray diffraction in a Diamond Anvil Cell during room temperature compression in the presence of He, H2, N2 and Daphne Oil 7474. The data demonstrate that the existence of the pseudo simple-cubic (p-sc) structure above 10.5 GPa is an intrinsic feature of P independent from the pressure transmitting medium. In the case of He, the pressure evolution of the lattice parameters and unit cell volume of P across the A17, A7 and p-sc structures was obtained and the corresponding EOS derived, providing a deeper insight on the recently reported p-sc structure. The results presented in this letter highlight the key role of the s-p orbital mixing in the formation and stabilization of the p-sc structure up to ∼30 GPa, solving apparent contradictions emerging from previous literature and finally bringing order to the sequence of the high pressure A7 layered structure in group 15 elements.

12.
Chem Sci ; 9(1): 254-260, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29629095

RESUMO

Low-dimensional nanomaterials such as highly ordered polyaniline (PANI) have attracted considerable interest due to their expected extraordinary electronic and optoelectronic properties. In spite of several attempts, the attainment of atomically well-ordered PANI is a long-standing challenge. Pressure-induced polymerization of aromatic molecules in the crystal phase has been demonstrated as a practicable route for the synthesis of highly ordered polymers but this approach has never been tested to produce PANI. Here we show the synthesis of diamondoid polyaniline-like nanothreads at 33 GPa and 550 K by compressing aniline in crystal phase-II. Infrared spectroscopy, transmission electron microscopy, X-ray diffraction data, and DFT calculations support the formation of this totally new polyaniline-like nanothread. The NH2-enriched carbon nanothread combines the outstanding mechanical properties of carbon nanotubes with the versatility of NH2 groups decorating the exterior of the nanothreads representing potential active sites for doping and as linkers for molecules with biological interest and inorganic nanostructures. The synergy of all of these properties emphasizes the strong potential of this material to be applied in a broad range of areas, from chemistry to materials engineering.

13.
Angew Chem Int Ed Engl ; 56(45): 14135-14140, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28940812

RESUMO

Black phosphorus was compressed at room temperature across the A17, A7 and simple-cubic phases up to 30 GPa, using a diamond anvil cell and He as pressure transmitting medium. Synchrotron X-ray diffraction showed the persistence of two previously unreported peaks related to the A7 structure in the pressure range of the simple-cubic phase. The Rietveld refinement of the data demonstrates the occurrence of a two-step mechanism for the A7 to simple-cubic phase transition, indicating the existence of an intermediate pseudo simple-cubic structure. From a chemical point of view this study represents a deep insight on the mechanism of interlayer bond formation during the transformation from the layered A7 to the non-layered simple-cubic phase of phosphorus, opening new perspectives for the design, synthesis and stabilization of phosphorene-based systems. As superconductivity is concerned, a new experimental evidence to explain the anomalous pressure behavior of Tc in phosphorus below 30 GPa is provided.

14.
Nat Chem ; 8(5): 442-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27102677

RESUMO

The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom-namely, the relative vertical shifts of neighbouring chains-are mathematically equivalent to the phase angles of rotating planar ('XY') spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets-including collective spin-vortices of relevance to data storage applications-are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible 'toy' spin models and also how the theoretical understanding of those models allows control over collective ('emergent') phenomena in supramolecular systems.

15.
Nat Commun ; 7: 10445, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842772

RESUMO

Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic 'procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood 'waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics.

16.
Dalton Trans ; 45(10): 4258-68, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26575842

RESUMO

X-ray diffraction has been used to investigate the kinetics of amorphization through ball-milling at 20 Hz, for five zeolitic imidazolate frameworks (ZIFs) - ZIF-8, ZIF-4, ZIF-zni, BIF-1-Li and CdIF-1. We find that the rates of amorphization for the zinc-containing ZIFs increase with increasing solvent accessible volume (SAV) in the sequence ZIF-8 > ZIF-4 > ZIF-zni. The Li-B analogue of the dense ZIF-zni amorphizes more slowly than the corresponding zinc phase, with the behaviour showing a correlation with their relative bulk moduli and SAVs. The cadmium analogue of ZIF-8 (CdIF-1) amorphizes more rapidly than the zinc counterpart, which we ascribe primarily to its relatively weak M-N bonds as well as the higher SAV. The results for the ZIFs are compared to three classical zeolites - Na-X, Na-Y and ZSM-5 - with these taking up to four times longer to amorphize. The presence of adsorbed solvent in the pores is found to render both ZIF and zeolite frameworks more resistant to amorphization. X-ray total scattering measurements show that amorphous ZIF-zni is structurally indistinguishable from amorphous ZIF-4 with both structures retaining the same short-range order that is present in their crystalline precursors. By contrast, both X-ray total scattering measurements and (113)Cd NMR measurements point to changes in the local environment of amorphous CdIF-1 compared with its crystalline CdIF-1 precursor.

17.
Dalton Trans ; 45(10): 4169-78, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26477747

RESUMO

The compositional dependence of thermal expansion behaviour in 19 different perovskite-like metal-organic frameworks (MOFs) of composition [A(I)][M(II)(HCOO)3] (A = alkylammonium cation; M = octahedrally-coordinated divalent metal) is studied using variable-temperature X-ray powder diffraction measurements. While all systems show essentially the same type of thermomechanical response-irrespective of their particular structural details-the magnitude of this response is shown to be a function of A(I) and M(II) cation radii, as well as the molecular anisotropy of A(I). Flexibility is maximised for large M(II) and small A(I), while the shape of A(I) has implications for the direction of framework hingeing.

18.
Phys Chem Chem Phys ; 17(32): 20449-65, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26019018

RESUMO

While all materials reduce their intrinsic volume under hydrostatic (uniform) compression, a select few actually expand along one or more directions during this process of densification. As rare as it is counterintuitive, such "negative compressibility" behaviour has application in the design of pressure sensors, artificial muscles and actuators. The recent discovery of surprisingly strong and persistent negative compressibility effects in a variety of new families of materials has ignited the field. Here we review the phenomenology of negative compressibility in this context of materials diversity, placing particular emphasis on the common structural motifs that recur amongst known examples. Our goal is to present a mechanistic understanding of negative compressibility that will help inform a clear strategy for future materials design.

19.
CrystEngComm ; 17(15): 2925-2928, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25892969

RESUMO

Reductive intercalation of potassium within the molecular framework Ag3[Fe(CN)6] gives rise to a volume strain that is an order of magnitude smaller than is typical for common ion-storage materials. We suggest that framework flexibility might be exploited as a general strategy for reducing cycling strain in battery and ion-storage materials.

20.
CrystEngComm ; 17(2): 361-369, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25632268

RESUMO

The metal-organic framework copper(i) tricyanomethanide, Cu(tcm), undergoes a ferroelastic transition on cooling below Tf = 240 K. Thermal expansion measurements reveal an order-of-magnitude variation in framework flexibility across Tf. The low-temperature phase α-Cu(tcm) exhibits colossal positive and negative thermal expansion that is the strongest ever reported for a framework material. On exposure to acetonitrile, Cu(tcm) undergoes a reconstructive solid-phase transition to acetonitrilocopper(i) tricyanomethanide. This transition can be reversed by heating under vacuum. Infrared spectroscopy measurements are sensitive to the phase change, suggesting that Cu(tcm) may find application in solid-phase acetonitrile sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...