Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704047

RESUMO

Human skin is the first line of photoprotection against UV radiation. However, despite having its defence mechanisms, the photoprotection that the skin exerts is not enough. To protect human skin, the inclusion of UV filters in the cosmetic industry has grown significantly as a photoprotection strategy. Octylmethoxycinnamate, also designated by octinoxate, or 2-ethylhexyl-4-methoxycinnamate (CAS number: 5466-77-3) is one of the most widely used UV-B filter in the cosmetic industry. The toxic effects of OMC have alarmed the public, but there is still no consensus in the scientific community about its use. This article aims to provide an overview of the UV filters' photoprotection, emphasizing the OMC and the possible negative effects it may have on the public health. Moreover, the current legislation will be addressed. In summary, the recommendations should be rethought to assess their risk-benefit, since the existing literature warns us to endocrine-disrupting effects of OMC. Further studies should be focus on the toxicity of OMC alone, in mixture and should consider its degradation products, to improve the knowledge of its risk assessment as EDC.


Assuntos
Cinamatos , Disruptores Endócrinos , Protetores Solares , Raios Ultravioleta , Cinamatos/química , Cinamatos/toxicidade , Humanos , Protetores Solares/toxicidade , Disruptores Endócrinos/toxicidade , Medição de Risco , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Cosméticos/toxicidade
2.
J Xenobiot ; 14(2): 497-515, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38651380

RESUMO

Hypertensive disorders in pregnancy (HDP) are the most prevalent diseases during pregnancy. In addition to the already identified risk factors, exposure to environmental contaminants has been also considered a new one. Phthalates, which are classified as priority environmental pollutants due to their ubiquitousness and endocrine disrupting properties, have been implicated in HDP in some epidemiological studies. Nevertheless, phthalates' vascular impacts still need to be clarified. Thus, we aimed to understand the connection between phthalates exposure and the occurrence of gestational hypertension, as well as the pathway involved in the pathological vascular effects. We investigated diethyl phthalate's (DEP) effect on the vascular reactivity of the human umbilical arteries (HUAs) from normotensive and hypertensive pregnant women. Both DEP's nongenomic (within minutes effect) and genomic (24 h exposure to DEP) actions were evaluated, as well as the contribution of cyclic guanosine monophosphate and Ca2+ channel pathways. The results show that short-term exposure to DEP interferes with serotonin and histamine receptors, while after prolonged exposure, DEP seems to share the same vasorelaxant mechanism as estrogens, through the NO/sGC/cGMP/PKG signaling pathway, and to interfere with the L-type Ca2+ channels. Thus, the vascular effect induced by DEP is similar to that observed in HUA from hypertensive pregnancies, demonstrating that the development of HDP may be a consequence of DEP exposure.

3.
Curr Issues Mol Biol ; 46(3): 1668-1693, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534724

RESUMO

Hypertensive disorders of pregnancy (HDP) represent a substantial risk to maternal and fetal health. Emerging evidence suggests an association between testosterone and pre-eclampsia (PE), potentially mediated through androgen receptors (AR). Nevertheless, the mechanism driving this association is yet to be elucidated. On the other hand, reports of transgender men's pregnancies offer a limited and insightful opportunity to understand the role of high androgen levels in the development of HDP. In this sense, a literature review was performed from a little over 2 decades (1998-2022) to address the association of testosterone levels with the development of HDP. Furthermore, this review addresses the case of transgender men for the first time. The main in vitro outcomes reveal placenta samples with greater AR mRNA expression. Moreover, ex vivo studies show that testosterone-induced vasorelaxation impairment promotes hypertension. Epidemiological data point to greater testosterone levels in blood samples during PE. Studies with transgender men allow us to infer that exogenous testosterone administration can be considered a risk factor for PE and that the administration of testosterone does not affect fetal development. Overall, all studies analyzed suggested that high testosterone levels are associated with PE.

4.
J Xenobiot ; 14(1): 320-332, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535495

RESUMO

BACKGROUND: Spironolactone (SPI) is a diuretic widely used to treat cardiovascular diseases (CVD) and is non-specific for mineralocorticoid receptors (MR) and with an affinity for progesterone (PR) and androgen (AR) receptors. Since 2009, it has been suggested that pharmaceuticals are emerging contaminants (called EDC), and recently, it was reported that most EDC are AR and MR antagonists and estrogen receptors (ER) agonists. Concerning SPI, endocrine-disrupting effects were observed in female western mosquitofish, but there are still no data regarding the SPI effects as a possible human EDC. METHODS: In this work, aortic rings were used to analyze the contractility effects of SPI and the mode of action concerning the involvement of Ca2+ channels and endothelial pathways. Moreover, cytotoxic effects were analyzed by MTT assays. RESULTS: SPI induces vasodilation in the rat aorta by endothelium-dependent mechanisms involving NO and by endothelium-independent mechanisms blocking Ca2+ channels. Moreover, a non-monotonic effect characteristic of EDC was observed for SPI-induced decrease in cell viability. CONCLUSIONS: Our findings suggest that SPI may act as an EDC at a human level. However, ex vivo studies with human arteries should be carried out to better understand this drug's implications for human health and future generations.

5.
Arch Toxicol ; 98(1): 1-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855918

RESUMO

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.


Assuntos
Transtorno do Espectro Autista , Disruptores Endócrinos , Criança , Humanos , Transtorno do Espectro Autista/induzido quimicamente , Sistema Nervoso , Fenóis/toxicidade , Fenóis/química , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química
6.
J Toxicol Environ Health B Crit Rev ; 27(2): 55-72, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38146151

RESUMO

Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.


Assuntos
Cosméticos , Protetores Solares , Protetores Solares/toxicidade , Protetores Solares/efeitos da radiação , Cinamatos/toxicidade , Raios Ultravioleta/efeitos adversos
7.
Chemosphere ; 340: 139904, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611763

RESUMO

Phthalates are classified as priority environmental pollutants, since they are ubiquitous in the environment, have endocrine disrupting properties and can contribute to impaired health. Used primarily in personal care products and excipients for pharmaceuticals, diethyl phthalate (DEP) is a short-chain alkyl phthalate that has been linked to decreased blood pressure, glucose tolerance, and increased gestational weight gain in humans, while in animals it has been associated with atherosclerosis and metabolic syndrome. Although all these findings are related to risk factors or cardiovascular diseases, DEP's vascular impacts still need to be clarified. Thus, performing ex vivo and in vitro experiments, we aimed to understand the vascular DEP effects in rat. To evaluate the vascular contractility of rat aorta exposed to different doses of DEP (0.001-1000 µM), an organs bath was used; and resorting to a cell line of the rat aorta vascular smooth muscle, electrophysiology experiments were performed to analyse the effects of a rapid (within minutes with no genomic effects) and a long-term (24 h with genomic effects) exposure of DEP on the L-type Ca2+ current (ICa,L), and the expression of several genes related with the vascular function. For the first time, vascular electrophysiological properties of an EDC were analysed after a long-term genomic exposure. The results show a hormetic response of DEP, inducing a Ca2+ current inhibition of the rat aorta, which may be responsible for impaired cardiovascular electrical health. Thus, these findings contribute to a greater scientific knowledge about DEP's effects in the cardiovascular system, specifically its implications in the development of electrical disturbances like arrhythmias and its possible mechanisms.


Assuntos
Doenças Cardiovasculares , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ácidos Ftálicos , Humanos , Animais , Ratos , Ácidos Ftálicos/toxicidade , Aorta
8.
Environ Pollut ; 335: 122302, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536478

RESUMO

Cardiovascular diseases (CVD) represent the number one cause of death worldwide. The vascular endothelium may play a role in the pathophysiology of CVD diseases. Octylmethoxycinnamate (OMC) is a UV-B filter (CAS number: 5466-77-3) widely used worldwide in numerous personal care products, including sunscreens, daily creams, and makeup. This UV-B filter is considered an endocrine disruptor. Therefore, this investigation aimed to evaluate the direct effects of OMC in human umbilical arteries (HUAs) with endothelium and the possible mechanisms involved in the response. The results demonstrated that OMC exerts a rapid (non-genomic) and endothelium-dependent arterial relaxant effect on HUAs previously contracted with serotonin (5-HT) and Histamine (His). On the other hand, when HUAs were contracted with potassium chloride (KCl), the relaxing effect was only observed in HUAs without endothelium, and it appeared to be inhibited in HUAs with endothelium. Thus, the vasorelaxant effect of OMC depends on the endothelium and depends on the contractile agent used, suggesting that OMC may act through different signaling pathways. Furthermore, computational modulation studies, corroborated the binding of OMC to all the proteins under investigation (eNOS, COX-2, ET-1, and TxA2), with higher affinity for COX-2. In summary, the vascular effect of OMC may involve activating different pathways, i.e., acting through the NO pathway, COX pathway, or activating the endothelin-1 pathway.


Assuntos
Cinamatos , Artérias Umbilicais , Humanos , Artérias Umbilicais/fisiologia , Ciclo-Oxigenase 2/farmacologia , Cinamatos/toxicidade , Contração Muscular , Serotonina
9.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569791

RESUMO

Endocrine disruptor chemicals (EDCs) can have a harmful effect on the human body's endocrine system and thus adversely affect the development, reproduction, neurological, cardiovascular, and immune systems and metabolism in humans and wildlife. According to the World Health Organization, EDCs are mostly man-made and found ubiquitously in our daily lives, notably in pesticides, metals, and additives or contaminants in food and personal care products. Human exposure occurs through ingestion, inhalation, and dermal contact. Bisphenol A (BPA) is a proven EDC capable of mimicking or blocking receptors and altering hormone concentrations and metabolism. Although consumed in low doses, it can stimulate cellular responses and affect the body's functions. In humans, exposure to BPA has been correlated with the onset or development of several diseases. This literature review aimed to verify the effects of BPA on human male infertility using the most recently published literature. Thus, this review allowed us to conclude that this compound seems to have harmful effects on human male fertility, causing changes in hormonal and semen characteristics. However, these conclusions lack more robust and reproducible scientific studies. Even so, and since male infertility prevalence is increasing, preventive measures must be taken to ensure male fertility.


Assuntos
Disruptores Endócrinos , Infertilidade Masculina , Humanos , Masculino , Reprodução , Fertilidade , Fenóis/efeitos adversos , Compostos Benzidrílicos/toxicidade , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/epidemiologia , Disruptores Endócrinos/toxicidade
10.
J Hazard Mater ; 457: 131680, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269565

RESUMO

Being an essential component in the plastics industry, phthalates are ubiquitous in the environment and in everyday life. They are considered environmental contaminants that have been classified as endocrine-disrupting compounds. Despite di-2-ethylhexyl phthalate (DEHP) being the most common plasticizer and the most studied to date, there are many others that, in addition to being widely used in the plastic, are also applied in the medical and pharmaceutical industries and cosmetics. Due to their wide use, phthalates are easily absorbed by the human body where they can disrupt the endocrine system by binding to molecular targets and interfering with hormonal homeostasis. Thus, phthalates exposure has been implicated in the development of several diseases in different age groups. Collecting information from the most recent available literature, this review aims to relate human phthalates' exposure with the development of cardiovascular diseases throughout all ages. Overall, most of the studies presented demonstrated an association between phthalates and several cardiovascular diseases, either from prenatal or postnatal exposure, affecting foetuses, infants, children, young and older adults. However, the mechanisms underlying these effects remain poorly explored. Thus, considering the cardiovascular diseases incidence worldwide and the constant human exposure to phthalates, this topic should be extensively studied to understand the mechanisms involved.


Assuntos
Doenças Cardiovasculares , Dietilexilftalato , Ácidos Ftálicos , Gravidez , Criança , Feminino , Humanos , Idoso , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Ácidos Ftálicos/toxicidade , Plastificantes/análise , Plásticos
11.
Metabolites ; 13(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37367903

RESUMO

Since the beginning of their production, in the 1930s, phthalates have been widely used in the plastics industry to provide durability and elasticity to polymers that would otherwise be rigid, or as solvents in hygiene and cosmetic products. Taking into account their wide range of applications, it is easy to understand why their use has been increasing over the years, making them ubiquitous in the environment. This way, all living organisms are easily exposed to these compounds, which have already been classified as endocrine disruptor compounds (EDC), affecting hormone homeostasis. Along with this increase in phthalate-containing products, the incidence of several metabolic diseases has also been rising, namely diabetes. That said, and considering that factors such as obesity and genetics are not enough to explain this substantial increase, it has been proposed that the exposure to environmental contaminants may also be a risk factor for diabetes. Thus, the aim of this work is to review whether there is an association between the exposure to phthalates and the development of the several forms of diabetes mellitus, during pregnancy, childhood, and adulthood.

12.
Toxics ; 11(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235223

RESUMO

Hexabromocyclododecane (HBCD) is a non-aromatic compound belonging to the bromine flame retardant family and is a known persistent organic pollutant (POP). This compound accumulates easily in the environment and has a high half-life in water. With a variety of uses, the HBCD is found in house dust, electronics, insulation, and construction. There are several isomers and the most studied are α-, ß-, and γ-HBCD. Initially used as a substitute for other flame retardants, the polybrominated diphenyl ethers (PBDEs), the discovery of its role as a POP made HBCD use and manufacturing restricted in Europe and other countries. The adverse effects on the environment and human health have been piling, either as a result from its accumulation or considering its power as an endocrine disruptor (ED). Furthermore, it has also been proven that it has detrimental effects on the neuronal system, endocrine system, cardiovascular system, liver, and the reproductive system. HBCD has also been linked to cytokine production, DNA damage, increased cell apoptosis, increased oxidative stress, and reactive oxygen species (ROS) production. Therefore, this review aims to compile the most recent studies regarding the negative effects of this compound on the environment and human health, describing the possible mechanisms by which this compound acts and its possible toxic effects.

13.
Environ Res ; 226: 115628, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907341

RESUMO

Bisphenol A (BPA) is one of the most widely used synthetic compound in the manufacture of polycarbonate plastics and epoxy resins. Worryingly, BPA is an endocrine disrupting chemical (EDC) with an estrogenic, androgenic, or anti-androgenic activities. However, the vascular implications of BPA exposome in pregnancy is unclear. In this sense, the present work proposed to understand how BPA exposure impair the vasculature of the pregnant women. To elucidate this, ex vivo studies were performed using human umbilical arteries to explore the acute and chronic effects of BPA. The mode of action of BPA was also explored by analysing the activity (by ex vivo studies) and expression (in vitro studies) analysis of Ca2+ and K+-channels and soluble guanyl cyclase. Moreover, in silico docking simulations were performed to unveil the modes of interactions of BPA with the proteins involved in these signalling pathways. Our study showed that the exposure to BPA may modify the vasorelaxant response of HUA, interfering with NO/sGC/cGMP/PKG pathway by modulation of sGC and activation of BKCa channels. Moreover, our findings suggest that BPA can modulate the HUA reactivity, increasing the L-type Ca2+ Channels (LTCC) activity, a common vascular response observed in hypertensive disorders of pregnancy.


Assuntos
Disruptores Endócrinos , Artérias Umbilicais , Humanos , Feminino , Gravidez , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade
14.
Mol Neurobiol ; 60(4): 1964-1985, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36596967

RESUMO

Cerebrovascular diseases, such as ischemic cerebral vascular accident (CVA), are responsible for causing high rates of morbidity, mortality, and disability in the population. The neurovascular unit (NVU) during and after ischemic CVA plays crucial roles in cell regulation and preservation, the immune and inflammatory response, and cell and/or tissue survival and repair. Cellular responses to 17ß-estradiol (E2) can be triggered by two mechanisms: one called classical or genomic, which is due to the activation of the "classical" nuclear estrogen receptors α (ERα) and ß (ERß), and the non-genomic or rapid mechanism, which is due to the activation of the G protein-coupled estrogen receptor 1 (GPER) that is located in the plasma membrane and some in intracellular membranes, such as in the Golgi apparatus and endoplasmic reticulum. Nuclear receptors can regulate gene expression and cellular functions. On the contrary, activating the GPER by E2 and/or its G-1 agonist triggers several rapid cell signaling pathways. Therefore, E2 or its G-1 agonist, by mediating GPER activation and/or expression, can influence several NVU cell types. Most studies argue that the activation of the GPER may be used as a potential therapeutic target in various pathologies, such as CVA. Thus, with this review, we aimed to summarize the existing literature on the role of GPER mediated by E2 and/or its agonist G-1 in the physiology and pathophysiology of NVU.


Assuntos
Estradiol , Acidente Vascular Cerebral , Humanos , Estradiol/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Acidentes
15.
Crit Rev Toxicol ; 52(6): 469-498, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36472586

RESUMO

Bisphenol A (BPA) is a ubiquitous chemical compound constantly being released into the environment, making it one of the most persistent endocrine-disrupting chemical (EDC) in nature. This EDC has already been associated with developing various pathologies, such as diabetes, obesity, and cardiovascular, renal, and behavioral complications, among others. Therefore, over the years, BPA has been replaced, gradually, by its analog compounds. However, these compounds are structurally similar to BPA, so, in recent years, questions have been raised concerning their safety for human health. Numerous investigations have been performed to determine the effects BPA substitutes may cause, particularly during pregnancy and prenatal life. On the other hand, studies investigating the association of these compounds with the development of cardiovascular diseases (CVD) have been developed. In this sense, this review summarizes the existing literature on the transgenerational transfer of BPA substitutes and the consequent effects on maternal and offspring health following prenatal exposure. In addition, these compounds' effects on the cardiovascular system and the susceptibility to develop CVD will be presented. Therefore, this review aims to highlight the need to investigate further the safety and benefits, or hazards, associated with replacing BPA with its analogs.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Disruptores Endócrinos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Disruptores Endócrinos/toxicidade , Compostos Benzidrílicos/toxicidade , Doenças Cardiovasculares/induzido quimicamente
16.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232730

RESUMO

Hygiene is essential to avoid diseases, and this is thanks to daily cleaning and disinfection habits. Currently, there are numerous commercial products containing antimicrobial agents, and although they are efficient in disinfecting, it is still not known the effect of the constant use of these products on human health. In fact, a massive use of disinfectants has been observed due to COVID-19, but the possible adverse effects are not yet known. Triclosan is one of the antimicrobial agents used in cosmetic products, toothpaste, and disinfectants. This compound is an endocrine disruptor, which means it can interfere with hormonal function, with its estrogenic and androgenic activity having already been stated. Even if the use of triclosan is well-regulated, with the maximum allowed concentration in the European Union of 0.3% (m/m), its effects on human health are still uncertain. Studies in animals and humans suggest the possibility of harmful health outcomes, particularly for the reproductive system, and in a less extent for the cardiovascular and thyroid functions. Thus, the purpose of this review was to analyse the possible implications of the massive use of triclosan, mainly on the reproductive and cardiovascular systems and on the thyroid function, both in animals and humans.


Assuntos
Anti-Infecciosos Locais , COVID-19 , Sistema Cardiovascular , Desinfetantes , Disruptores Endócrinos , Triclosan , Animais , Anti-Infecciosos Locais/efeitos adversos , Disruptores Endócrinos/toxicidade , Humanos , Glândula Tireoide , Cremes Dentais , Triclosan/efeitos adversos
17.
Toxics ; 10(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36136495

RESUMO

Tetrabromobisphenol A (TBBPA) is a flame retardant widely used to reduce flammability. It is an endocrine disruptor, and due to constant human exposure, some concerns have been raised regarding its impact on human health. Studies showed that TBBPA affects oxidative stress, cell proliferation and intracellular calcium levels. However, the vascular consequences of TBBPA exposure are still relatively unexplored. Hence, this work aimed to analyse TBBPA effects on rat aortic smooth muscle and its action mechanisms. Through an ex vivo approach, Wistar rat aortas were used in an organ bath to evaluate the vascular effect of TBBPA (0.01-100 µM). Additionally, TBBPA's mode of action was studied through calcium and potassium channel inhibitors. Resorting to in vitro studies, A7r5 cells were used to analyse L-Type voltage-gated calcium channel (VGCC) activity through the whole-cell configuration of the patch clamp technique, and the mRNA expression of proteins and ion channels involved in vascular contractility. The results showed vasorelaxation of rat aorta induced by TBBPA exposure, involving the inactivation of L-Type VGCC and activation of potassium channels, and the modulation of mRNA expression of L-type calcium and large-conductance calcium 1.1 and the BKCa 1.1 α- and ß1 -subunit channels, soluble guanylyl cyclase and protein Kinase G.

18.
Chemosphere ; 307(Pt 2): 135807, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931261

RESUMO

Throughout human life, an extensive and varied range of emerging environmental contaminants, called endocrine disruptors (EDCs), cause adverse health effects, including in the cardiovascular (CV) system. Cardiovascular diseases (CVD) are worryingly one of the leading causes of all mortality and mobility worldwide. The UV-B filter octylmethoxycinnamate (also designated octinoxate, or ethylhexyl methoxycinnamate (CAS number: 5466-77-3)) is an EDC widely present in all personal care products. However, to date, there are no studies evaluating the OMC-induced effects on vasculature using animal models to improve human cardiovascular health. This work analysed the effects of OMC on rat aorta vasculature and explored the modes of action implicated in these effects. Our results indicated that OMC relaxes the rat aorta by endothelium-dependent mechanisms through the signaling pathways of cyclic nucleotides and by endothelium-independent mechanisms involving inhibition of L-Type voltage-operated Ca2+ channels (L-Type VOCC). Overall, OMC toxicity on rat aorta may produce hypotension via vasodilation due to excessive NO release and blockade of L-Type VOCC. Moreover, the OMC-induced endothelial dysfunction may also occur by promoting the endothelial release of endothelin-1. Therefore, our findings demonstrate that exposure to OMC alters the reactivity of the rat aorta and highlight that long-term OMC exposure may increase the risk of human CV diseases.


Assuntos
Disruptores Endócrinos , Animais , Aorta/metabolismo , Cinamatos , Disruptores Endócrinos/metabolismo , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Endotélio , Endotélio Vascular , Humanos , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Ratos
19.
J Xenobiot ; 12(3): 181-213, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35893265

RESUMO

Currently, the plastic monomer and plasticizer bisphenol A (BPA) is one of the most widely used chemicals. BPA is present in polycarbonate plastics and epoxy resins, commonly used in food storage and industrial or medical products. However, the use of this synthetic compound is a growing concern, as BPA is an endocrine-disrupting compound and can bind mainly to estrogen receptors, interfering with different functions at the cardiovascular level. Several studies have investigated the disruptive effects of BPA; however, its cardiotoxicity remains unclear. Therefore, this review's purpose is to address the most recent studies on the implications of BPA on the cardiovascular system. Our findings suggest that BPA impairs cardiac excitability through intracellular mechanisms, involving the inhibition of the main ion channels, changes in Ca2+ handling, the induction of oxidative stress, and epigenetic modifications. Our data support that BPA exposure increases the risk of developing cardiovascular diseases (CVDs) including atherosclerosis and its risk factors such as hypertension and diabetes. Furthermore, BPA exposure is also particularly harmful in pregnancy, promoting the development of hypertensive disorders during pregnancy. In summary, BPA exposure compromises human health, promoting the development and progression of CVDs and risk factors. Further studies are needed to clarify the human health effects of BPA-induced cardiotoxicity.

20.
Biomedicines ; 10(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35625791

RESUMO

Every day, people use personal care products containing UV filters. Although their use initially showed a protective role, toxicity is a concern for human health as several UV filters are endocrine-disrupting chemicals (EDCs). Exposure to EDCs may induce cardiovascular diseases and can affect the health of sensitive people, such as pregnant women. Currently, the world's most widely used UV-B filter is octylmethoxycinnamate (OMC), an EDC. However, the disruptive effects on pregnant women are little known. The present work proposed to understand how long-term exposure to OMC affects vascular homeostasis. Endothelium-denuded human umbilical artery (HUA) rings were incubated in an organ bath system. Long-term effects of exposure to OMC (0.001-50 µmol/L) were evaluated on the contractile responses of HUA to the application of the contractile agents, serotonin (5-HT) and histamine (Hist). To investigate in more detail the vascular mode of action of OMC, through which it impairs the vascular homeostasis of HUA, the activity and expression of different 5-HT and Hist-receptors involved in contractility processes were studied. Our findings pointed out an increase in the reactivity of HUA to 5-HT and Hist due to OMC exposure. These alterations in reactivity may be precursors of preeclampsia development and/or gestational hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...