Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
2.
Psychopharmacology (Berl) ; 241(5): 1001-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270614

RESUMO

RATIONALE: Recently, we demonstrated that the activation of the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) signaling facilitates depressive-like behaviors. Additionally, literature findings support the ability of the N/OFQ-NOP system to modulate the hypothalamic-pituitary-adrenal (HPA) axis. OBJECTIVES: Considering that dysfunctional HPA axis is strictly related to stress-induced psychopathologies, we aimed to study the role of the HPA axis in the pro-depressant effects of NOP agonists. METHODS: Mice were treated prior to stress with the NOP agonist Ro 65-6570, and immobility time in the forced swimming task and corticosterone levels were measured. Additionally, the role of endogenous glucocorticoids and CRF was investigated using the glucocorticoid receptor antagonist mifepristone and the CRF1 antagonist antalarmin in the mediation of the effects of Ro 65-6570. RESULTS: The NOP agonist in a dose-dependent manner further increased the immobility of mice in the second swimming session compared to vehicle. By contrast, under the same conditions, the administration of the NOP antagonist SB-612111 before stress reduced immobility, while the antidepressant nortriptyline was inactive. Concerning in-serum corticosterone in mice treated with vehicle, nortriptyline, or SB-612111, a significant decrease was observed after re-exposition to stress, but no differences were detected in Ro 65-6570-treated mice. Administration of mifepristone or antalarmin blocked the Ro 65-6570-induced increase in the immobility time in the second swimming session. CONCLUSIONS: Present findings suggest that NOP agonists increase vulnerability to depression by hyperactivating the HPA axis and then increasing stress circulating hormones and CRF1 receptor signaling.


Assuntos
Cicloeptanos , Imidazóis , Peptídeos Opioides , Piperidinas , Receptores Opioides , Compostos de Espiro , Camundongos , Animais , Receptores Opioides/fisiologia , Peptídeos Opioides/metabolismo , Glucocorticoides/farmacologia , Nortriptilina/farmacologia , Receptor de Nociceptina , Corticosterona/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Mifepristona/farmacologia , Sistema Hipófise-Suprarrenal/metabolismo
3.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123151

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Canais Iônicos/química , Receptores Citoplasmáticos e Nucleares
4.
Pain ; 164(11): 2540-2552, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310430

RESUMO

ABSTRACT: Migraine is a disabling disorder characterized by recurrent headaches, accompanied by abnormal sensory sensitivity and anxiety. Despite extensive historical use of cannabis in headache disorders, there is limited research on the nonpsychoactive cannabidiol (CBD) for migraine and there is no scientific evidence to prove that CBD is an effective treatment. The effects of CBD are examined here using a calcitonin gene-related peptide (CGRP)-induced migraine model that provides measures of cephalic allodynia, spontaneous pain, altered light sensitivity (photophobia), and anxiety-like behavior in C57BL/6J mice. A single administration of CGRP induced facial hypersensitivity in both female and male mice. Repeated CGRP treatment produced progressively decreased levels in basal thresholds of allodynia in females, but not in males. A single CBD administration protected both females and males from periorbital allodynia induced by a single CGRP injection. Repeated CBD administration prevented increased levels of basal allodynia induced by repeated CGRP treatment in female mice and did not lead to responses consistent with migraine headache as occurs with triptans. Cannabidiol, injected after CGRP, reversed CGRP-evoked allodynia. Cannabidiol also reduced spontaneous pain traits induced by CGRP administration in female mice. Finally, CBD blocked CGRP-induced anxiety in male mice, but failed in providing protection from CGRP-induced photophobia in females. These results demonstrate the efficacy of CBD in preventing episodic and chronic migraine-like states with reduced risk of causing medication overuse headache. Cannabidiol also shows potential as an abortive agent for treating migraine attacks and headache-related conditions such as spontaneous pain and anxiety.

5.
Br J Pharmacol ; 180(17): 2298-2314, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37021779

RESUMO

BACKGROUND AND PURPOSE: In animal models of sepsis, increased activation of the Nociceptin/Orphanin FQ (N/OFQ) receptor NOP is associated with mortality and NOP antagonists improved survival. We have explored the role of the N/OFQ-NOP system in freshly isolated volunteer human B- and T-cells incubated with lipopolysaccharide (LPS) and peptidoglycan G (PepG) as a model of in vitro sepsis. EXPERIMENTAL APPROACH: B- and T-cell NOP expression was measured using the NOP fluorescent probe N/OFQATTO594 , N/OFQ content was measured using immunofluorescence, N/OFQ release was tracked using a CHOhNOPGαiq5 biosensor assay and NOP function was measured using transwell migration and cytokine/chemokine release using a 25-plex assay format. Cells were challenged with LPS/PepG. KEY RESULTS: CD19-positive B-cells bound N/OFQATTO594 ; they also contain N/OFQ. Stimulation with CXCL13/IL-4 increased N/OFQ release. N/OFQ trended to reduced migration to CXCL13/IL-4. Surface NOP expression was unaffected by LPS/PepG, but this treatment increased GM-CSF release in an N/OFQ sensitive manner. CD3-positive T-cells did not bind N/OFQATTO594 ; they did contain N/OFQ. Stimulation with CXCL12/IL-6 increased N/OFQ release. When incubated with LPS/PepG, NOP surface expression was induced leading to N/OFQATTO594 binding. In LPS/PepG-treated cells, N/OFQ reduced migration to CXCL12/IL-6. LPS/PepG increased GM-CSF release in an N/OFQ sensitive manner. CONCLUSIONS AND IMPLICATIONS: We suggest both a constitutive and sepsis-inducible N/OFQ-NOP receptor autocrine regulation of B- and T-cell function, respectively. These NOP receptors variably inhibit migration and reduce GM-CSF release. These data provide mechanistic insights to the detrimental role for increased N/OFQ signalling in sepsis and suggest a potential role for NOP antagonists as treatments.


Assuntos
Receptores Opioides , Sepse , Animais , Humanos , Receptores Opioides/metabolismo , Receptor de Nociceptina , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Lipopolissacarídeos/farmacologia , Interleucina-4 , Interleucina-6 , Peptídeos Opioides/fisiologia , Sepse/tratamento farmacológico , Nociceptina
7.
Front Pharmacol ; 14: 1133961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909169

RESUMO

The mu opioid receptor agonists are the most efficacious pain controlling agents but their use is accompanied by severe side effects. More recent developments indicate that some ligands can differentially activate receptor downstream pathways, possibly allowing for dissociation of analgesia mediated through the G protein from the opioid-related side effects mediated by ß-arrestin pathway. In an effort to identify such biased ligands, here we present a series of thirteen endomorphin-2 (EM-2) analogs with modifications in positions 1, 2, and/or 3. All obtained analogs behaved as mu receptor selective agonists in calcium mobilization assay carried out on cells expressing opioid receptors and chimeric G proteins. A Bioluminescence Resonance Energy Transfer (BRET) approach was employed to determine the ability of analogs to promote the interaction of the mu opioid receptor with G protein or ß-arrestin 2. Nearly half of the developed analogs showed strong bias towards G protein, in addition four compounds were nearly inactive towards ß-arrestin 2 recruitment while blocking the propensity of EM-2 to evoke mu-ß-arrestin 2 interaction. The data presented here contribute to our understanding of EM-2 interaction with the mu opioid receptor and of the transductional propagation of the signal. In addition, the generation of potent and selective mu receptor agonists strongly biased towards G protein provides the scientific community with novel tools to investigate the in vivo consequences of biased agonism at this receptor.

8.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293553

RESUMO

Recently, mixed opioid/NOP agonists came to the spotlight for their favorable functional profiles and promising outcomes in clinical trials as novel analgesics. This study reports on two novel chimeric peptides incorporating the fragment Tyr-c[D-Lys-Phe-Phe]Asp-NH2 (RP-170), a cyclic peptide with high affinity for µ and κ opioid receptors (or MOP and KOP, respectively), conjugated with the peptide Ac-RYYRIK-NH2, a known ligand of the nociceptin/orphanin FQ receptor (NOP), yielding RP-170-RYYRIK-NH2 (KW-495) and RP-170-Gly3-RYYRIK-NH2 (KW-496). In vitro, the chimeric KW-496 gained affinity for KOP, hence becoming a dual KOP/MOP agonist, while KW-495 behaved as a mixed MOP/NOP agonist with low nM affinity. Hence, KW-495 was selected for further in vivo experiments. Intrathecal administration of this peptide in mice elicited antinociceptive effects in the hot-plate test; this action was sensitive to both the universal opioid receptor antagonist naloxone and the selective NOP antagonist SB-612111. The rotarod test revealed that KW-495 administration did not alter the mice motor coordination performance. Computational studies have been conducted on the two chimeras to investigate the structural determinants at the basis of the experimental activities, including any role of the Gly3 spacer.


Assuntos
Analgésicos Opioides , Receptores Opioides , Animais , Camundongos , Analgésicos Opioides/uso terapêutico , Receptores Opioides/agonistas , Receptores Opioides kappa , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides mu/agonistas , Simulação de Acoplamento Molecular , Ligantes , Relação Dose-Resposta a Droga , Naloxona , Analgésicos/farmacologia , Peptídeos/farmacologia , Quimera , Peptídeos Cíclicos
9.
PLoS One ; 17(9): e0274080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107872

RESUMO

Sepsis is a dysregulated host response to infection that can cause widespread effects on other organs including cardiovascular depression, hypotension and organ failure. The receptor for Nociceptin/Orphanin FQ (N/OFQ), NOP is expressed on immune cells and these cells can release the peptide. Exogenous N/OFQ can dilate blood vessels and this peptide is increased in animal and human sepsis. We hypothesise that NOP receptors are present on vascular endothelial cells and therefore provide the target for released N/OFQ to cause vasodilation and hence hypotension. Using human umbilical vein endothelial cells (HUVEC) and human vascular smooth muscle cells (HVSMC) freshly prepared from umbilical cords and up to passage 4, we assessed NOP mRNA expression by Polymerase Chain Reaction (PCR), NOP surface receptor expression using a fluorescent NOP selective probe (N/OFQATTO594) and NOP receptor function with N/OFQ stimulated ERK1/2 phosphorylation. As an in vitro sepsis mimic we variably incubated cells with 100ng/ml Lipopolysaccharide and Peptidoglycan G (LPS/PepG). HUVECs express NOP mRNA and this was reduced by ~80% (n = 49) after 24-48 hours treatment with LPS/PepG. Untreated cells do not express surface NOP receptors but when treated with LPS/PepG the reduced mRNA was translated into protein visualised by N/OFQATTO594 binding (n = 49). These NOP receptors in treated cells produced an N/OFQ (1µM) driven increase in ERK1/2 phosphorylation (n = 20). One (of 50) HUVEC lines expressed NOP mRNA and receptor protein in the absence of LPS/PepG treatment. In contrast, HVSMC expressed NOP mRNA and surface receptor protein (n = 10) independently of LPS/PepG treatment. These receptors were also coupled to ERK1/2 where N/OFQ (1µM) increased phosphorylation. Collectively these data show that an in vitro sepsis mimic (LPS/PepG) upregulates functional NOP expression in the vascular endothelium. Activation of these endothelial receptors as suggested from in vivo whole animal work may contribute to the hypotensive response seen in sepsis. Moreover, blockade of these receptors might be a useful adjunct in the treatment of sepsis.


Assuntos
Hipotensão , Sepse , Animais , Células Endoteliais , Humanos , Lipopolissacarídeos , Células Musculares , Peptídeos Opioides , Peptidoglicano , RNA Mensageiro , Receptores Opioides , Receptor de Nociceptina , Nociceptina
10.
Neuroscience ; 496: 83-95, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710064

RESUMO

Evaluation of stimulus salience is critical for any higher organism, as it allows for prioritizing of vital information, preparation of responses, and formation of valuable memory. The paraventricular nucleus of the thalamus (PVT) has recently been identified as an integrator of stimulus salience but the neurochemical basis and afferent input regarding salience signaling have remained elusive. Here we report that neuropeptide S (NPS) signaling in the PVT is necessary for stimulus salience encoding, including aversive, neutral and reinforcing sensory input. Taking advantage of a striking deficit of both NPS receptor (NPSR1) and NPS precursor knockout mice in fear extinction or novel object memory formation, we demonstrate that intra-PVT injections of NPS can rescue the phenotype in NPS precursor knockout mice by increasing the salience of otherwise low-intensity stimuli, while intra-PVT injections of NPSR1 antagonist in wild type mice partially replicates the knockout phenotype. The PVT appears to provide stimulus salience encoding in a dose- and NPS-dependent manner. PVT NPSR1 neurons recruit the nucleus accumbens shell and structures in the prefrontal cortex and amygdala, which were previously linked to the brain salience network. Overall, these results demonstrate that stimulus salience encoding is critically associated with NPS activity in the PVT.


Assuntos
Núcleos da Linha Média do Tálamo , Neuropeptídeos , Animais , Extinção Psicológica , Medo/fisiologia , Camundongos , Núcleos da Linha Média do Tálamo/fisiologia , Vias Neurais/fisiologia , Núcleo Hipotalâmico Paraventricular , Tálamo/fisiologia
11.
Front Pharmacol ; 13: 873082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529436

RESUMO

The present study investigated the in vitro pharmacology of the human kappa opioid receptor using multiple assays, including calcium mobilization in cells expressing chimeric G proteins, the dynamic mass redistribution (DMR) label-free assay, and a bioluminescence resonance energy transfer (BRET) assay that allows measurement of receptor interaction with G protein and ß-arrestin 2. In all assays, dynorphin A, U-69,593, and [D-Pro10]dyn(1-11)-NH2 behaved as full agonists with the following rank order of potency [D-Pro10]dyn(1-11)-NH2 > dynorphin A ≥ U-69,593. [Dmt1,Tic2]dyn(1-11)-NH2 behaved as a moderate potency pure antagonist in the kappa-ß-arrestin 2 interaction assay and as low efficacy partial agonist in the other assays. Norbinaltorphimine acted as a highly potent and pure antagonist in all assays except kappa-G protein interaction, where it displayed efficacy as an inverse agonist. The pharmacological actions of novel kappa ligands, namely the dynorphin A tetrameric derivative PWT2-Dyn A and the palmitoylated derivative Dyn A-palmitic, were also investigated. PWT2-Dyn A and Dyn A-palmitic mimicked dynorphin A effects in all assays showing similar maximal effects but 3-10 fold lower potency. In conclusion, in the present study, multiple in vitro assays for the kappa receptor have been set up and pharmacologically validated. In addition, PWT2-Dyn A and Dyn A-palmitic were characterized as potent full agonists; these compounds are worthy of further investigation in vivo for those conditions in which the activation of the kappa opioid receptor elicits beneficial effects e.g. pain and pruritus.

12.
Neuropharmacology ; 212: 109077, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513173

RESUMO

Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of an inhibitory G protein coupled receptor named N/OFQ peptide receptor (NOP). Clinical and preclinical findings suggest that the blockade of the NOP signaling induces antidepressant-like effects. Additionally, the blockade of the NOP receptor during inescapable stress exposure prevented the acquisition of the helplessness phenotype, suggesting that NOP antagonists are able to increase stress resilience. BTRX-246040 (aka LY2940094) is a NOP receptor antagonist with high affinity, potency and selectivity for the NOP over classical opioid receptors. BTRX-246040 is under development for the treatment of depression, eating disorders and alcohol abuse and it already entered clinical trials. In the present study, the antidepressant effects of BTRX-246040 were evaluated in mice subjected to the forced swimming test and to the learned helplessness model of depression. Additionally, the ability of BTRX-246040 to prevent the development of the helpless behavior and to modulate adult hippocampal neurogenesis has been investigated. BTRX-246040 (30 mg/kg, i.p.) produced antidepressant-like effects in the forced swimming test and in the learned helplessness model. More interestingly, when given before the stress induction sessions it was able to prevent the development of the helplessness behavior. Under these experimental conditions, BTRX-246040 did not modulate adult hippocampal neurogenesis, neither in naive nor in stressed mice. This study, performed with a clinically viable ligand, further corroborates growing evidence indicating that the blockade of the NOP signaling may provide an innovative strategy for the treatment of stress related psychopathologies.


Assuntos
Peptídeos Opioides , Receptores Opioides , Animais , Antidepressivos/farmacologia , Hipocampo/metabolismo , Ligantes , Camundongos , Neurogênese , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo
13.
Neuropharmacology ; 209: 109020, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247453

RESUMO

Fentanyl derivatives (FENS) belongs to the class of Novel Synthetic Opioids that emerged in the illegal drug market of New Psychoactive Substances (NPS). These substances have been implicated in many cases of intoxication and death with overdose worldwide. Therefore, the aim of this study is to investigate the pharmaco-dynamic profiles of three fentanyl (FENT) analogues: Acrylfentanyl (ACRYLF), Ocfentanyl (OCF) and Furanylfentanyl (FUF). In vitro, we measured FENS opioid receptor efficacy, potency, and selectivity in calcium mobilization studies performed in cells coexpressing opioid receptors and chimeric G proteins and their capability to promote the interaction of the mu receptor with G protein and ß-arrestin 2 in bioluminescence resonance energy transfer (BRET) studies. In vivo, we investigated the acute effects of the systemic administration of ACRYLF, OCF and FUF (0.01-15 mg/kg i.p.) on mechanical and thermal analgesia, motor impairment, grip strength and cardiorespiratory changes in CD-1 male mice. Opioid receptor specificity was investigated in vivo using naloxone (NLX; 6 mg/kg i.p) pre-treatment. In vitro, the three FENS were able to activate the mu opioid receptor in a concentration dependent manner with following rank order potency: FUF > FENT=OCF > ACRYLF. All compounds were able to elicit maximal effects similar to that of dermorphin, with the exception of FUF which displayed lower maximal effects thus behaving as a partial agonist. In the BRET G-protein assay, all compounds behaved as partial agonists for the ß-arrestin 2 pathway in comparison with dermorphin, whereas FUF did not promote ß-arrestin 2 recruitment, behaving as an antagonist. In vivo, all the compounds increased mechanical and thermal analgesia with following rank order potency ACRYLF = FENT > FUF > OCF and impaired motor and cardiorespiratory parameters. Among the substances tested, FUF showed lower potency for cardiorespiratory and motor effects. These findings reveal the risks associated with the use of FENS and the importance of studying the pharmaco-dynamic properties of these drugs to better understand possible therapeutic interventions in the case of toxicity.


Assuntos
Fentanila , Receptores Opioides mu , Analgésicos Opioides , Animais , Fentanila/análogos & derivados , Fentanila/farmacologia , Furanos , Masculino , Camundongos , Dor/tratamento farmacológico , Receptores Opioides/metabolismo , Receptores Opioides mu/agonistas , beta-Arrestina 2/metabolismo
14.
BJA Open ; 4: 100110, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37588788

RESUMO

Background: Opioid receptors are naloxone-sensitive (MOP [mu: µ], DOP [delta: δ], and KOP [kappa: κ]) and naloxone-insensitive Nociceptin/Orphanin FQ (N/OFQ) peptide receptor (NOP). Clinically, most opioid analgesics target MOP. Angiogenesis is the formation of new blood vessels and involves endothelial cell activation, proliferation, and migration. The effect of opioids on this process is controversial with no data for NOP receptor ligands. Methods: We used patient-derived human umbilical vein endothelial cells (HUVECs) treated with media from the Michigan Cancer Foundation-7 (MCF-7) breast cancer cells or vascular endothelial growth factor (VEGF; 10 ng ml-1) and fibroblast growth factor (FGF; 10 ng ml-1) as angiogenic stimuli. We have measured (i) NOP/MOP messenger RNA, (ii) receptor protein using N/OFQATTO594 and DermorphinATTO488 as fluorescent probes for NOP and MOP, and (iii) NOP/MOP function in a wound healing assay (crude measure of migration that occurs during angiogenesis). Results: HUVEC lines from 32 patients were used. Using all 32 lines, mRNA for NOP but not MOP was detected. This was unaffected by media from MCF-7 cells or VEGF/FGF. There was no binding of either N/OFQATTO594(NOP) or DermorphinATTO488(MOP) in the absence or presence of angiogenic stimuli (six lines tested). In the absence of MOP mRNA, this was expected. Whilst MCF-7 conditioned medium (not VEGF/FGF) reduced wound healing per se (14 lines tested), there was no effect of N/OFQ (NOP ligand) or morphine (MOP ligand). Conclusions: Media from MCF-7 breast cancer cells or VEGF/FGF as angiogenic stimuli did not influence NOP translation into receptor protein. MOP was absent. In the absence of constitutive or inducible MOP/NOP, there was no effect on wound healing as a measure of angiogenesis.

15.
J Pharmacol Toxicol Methods ; 113: 107132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34728348

RESUMO

Opioid receptors are divided into the three classical types: MOP(µ:mu), DOP(δ:delta) and KOP(κ:kappa) that are naloxone-sensitive and an additional naloxone-insensitive nociceptin/orphanin FQ(N/OFQ) peptide receptor(NOP). Studies to determine opioid receptor location and turnover variably rely on; (i) measuring receptor mRNA, (ii) genetically tagging receptors, (iii) labelling receptors with radioligands, (iv) use of antibodies in immunohistochemistry/Western Blotting or (v) measuring receptor function coupled with the use of selective antagonists. All have their drawbacks with significant issues relating to mRNA not necessarily predicting protein, poor antibody selectivity and utility of radiolabels in low expression systems. In this minireview we discuss use of fluorescently labelled opioid receptor ligands. To maintain the pharmacological properties of the corresponding parent ligand fluorescently labelled ligands must take into account fluorophore (brightness and propensity to bleach), linker length and chemistry, and site to which the linker (and hence probe) will be attached. Use of donor and acceptor fluorophores with spectral overlap facilitates use in FRET type assays to determine proximity of ligand or tagged receptor pairs. There is a wide range of probes of agonist and antagonist nature for all four opioid receptor types; caution is needed with agonist probes due to the possibility for internalization. We have produced two novel ATTO based probes; DermorphinATTO488 (MOP) and N/OFQATTO594 (NOP). These probes label MOP and NOP in a range of preparations and using N/OFQATTO594 we demonstrate internalization and ligand-receptor interaction by FRET. Fluorescent opioid probes offer potential methodological advantages over more traditional use of antibodies and radiolabels.


Assuntos
Analgésicos Opioides , Receptores Opioides , Corantes Fluorescentes , Ligantes , Receptores Opioides mu
16.
Br J Pharmacol ; 178 Suppl 1: S27-S156, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529832

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G
17.
Bioorg Chem ; 115: 105219, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343741

RESUMO

The use of α-amino-γ lactam of Freidinger (Agl) may serve as an impressive method to increase the biological stability of peptides and an appropriate tool to elucidate their structure-activity relationships. The endomorphin-2 (EM-2) and [D-Ala2, des-Leu5] enkephalin amide (DAPEA) are two linear opioid tetrapeptides agonists of MOR and MOR/DOR respectively. Herein, we investigated the influence of the incorporation of (R/S)-Agl in position 2 and 3 on the biological profile of the aforementioned products in vitro and in vivo. Receptor radiolabeled displacement and functional assays were used to measure in vitro the binding affinity and receptors activation of the novel analogues. The mouse tail flick and formalin tests allowed to observe their antinociceptive effect in vivo. Data revealed that peptide A2D was able to selectively bind and activate MOR with a potent antinociceptive effect after intracerebroventricular (i.c.v.) administration, performing better than the parent compounds EM-2 and DAPEA. Molecular docking calculations helped us to understand the key role exerted by the Freidinger Agl moiety in A2D for the interaction with the MOR binding pocket.


Assuntos
Amidas/farmacologia , Encefalinas/farmacologia , Lactamas/farmacologia , Oligopeptídeos/farmacologia , Receptores Opioides mu/agonistas , Amidas/administração & dosagem , Amidas/química , Animais , Relação Dose-Resposta a Droga , Encefalinas/administração & dosagem , Encefalinas/química , Infusões Intraventriculares , Lactamas/administração & dosagem , Lactamas/química , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Relação Estrutura-Atividade
18.
Anesthesiology ; 135(3): 482-493, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237134

RESUMO

BACKGROUND: Cebranopadol, a mixed nociceptin/opioid receptor full agonist, can effectively relieve pain in rodents and humans. However, it is unclear to what degree different opioid receptor subtypes contribute to its antinociception and whether cebranopadol lacks acute opioid-associated side effects in primates. The authors hypothesized that coactivation of nociceptin receptors and µ receptors produces analgesia with reduced side effects in nonhuman primates. METHODS: The antinociceptive, reinforcing, respiratory-depressant, and pruritic effects of cebranopadol in adult rhesus monkeys (n = 22) were compared with µ receptor agonists fentanyl and morphine using assays, including acute thermal nociception, IV drug self-administration, telemetric measurement of respiratory function, and itch-scratching responses. RESULTS: Subcutaneous cebranopadol (ED50, 2.9 [95% CI, 1.8 to 4.6] µg/kg) potently produced antinociception compared to fentanyl (15.8 [14.6 to 17.1] µg/kg). Pretreatment with antagonists selective for nociceptin and µ receptors, but not δ and κ receptor antagonists, caused rightward shifts of the antinociceptive dose-response curve of cebranopadol with dose ratios of 2 and 9, respectively. Cebranopadol produced reinforcing effects comparable to fentanyl, but with decreased reinforcing strength, i.e., cebranopadol (mean ± SD, 7 ± 3 injections) versus fentanyl (12 ± 3 injections) determined by a progressive-ratio schedule of reinforcement. Unlike fentanyl (8 ± 2 breaths/min), systemic cebranopadol at higher doses did not decrease the respiratory rate (17 ± 2 breaths/min). Intrathecal cebranopadol (1 µg) exerted full antinociception with minimal scratching responses (231 ± 137 scratches) in contrast to intrathecal morphine (30 µg; 3,009 ± 1,474 scratches). CONCLUSIONS: In nonhuman primates, the µ receptor mainly contributed to cebranopadol-induced antinociception. Similar to nociceptin/µ receptor partial agonists, cebranopadol displayed reduced side effects, such as a lack of respiratory depression and pruritus. Although cebranopadol showed reduced reinforcing strength, its detectable reinforcing effects and strength warrant caution, which is critical for the development and clinical use of cebranopadol.


Assuntos
Indóis/administração & dosagem , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Receptores Opioides/agonistas , Compostos de Espiro/administração & dosagem , Analgésicos Opioides/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Feminino , Fentanila/administração & dosagem , Injeções Espinhais , Macaca mulatta , Masculino , Peptídeos Opioides/administração & dosagem , Receptores Opioides/fisiologia , Receptores Opioides mu/agonistas , Receptores Opioides mu/fisiologia , Receptor de Nociceptina , Nociceptina
19.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299276

RESUMO

1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.


Assuntos
Analgésicos Opioides/toxicidade , Anisóis/toxicidade , Derivados de Benzeno/toxicidade , Alucinógenos/toxicidade , Fenciclidina/toxicidade , Psicotrópicos/toxicidade , Receptores Opioides/metabolismo , Tramadol/toxicidade , Analgésicos Opioides/química , Animais , Anisóis/química , Derivados de Benzeno/química , Células Cultivadas , Cricetinae , Alucinógenos/química , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Fenciclidina/química , Psicotrópicos/química , Tramadol/química
20.
J Med Chem ; 64(10): 6656-6669, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33998786

RESUMO

The nociceptin/orphanin FQ (N/OFQ)/N/OFQ receptor (NOP) system controls different biological functions including pain and cough reflex. Mixed NOP/opioid receptor agonists elicit similar effects to strong opioids but with reduced side effects. In this work, 31 peptides with the general sequence [Tyr/Dmt1,Xaa5]N/OFQ(1-13)-NH2 were synthesized and pharmacologically characterized for their action at human recombinant NOP/opioid receptors. The best results in terms of NOP versus mu opioid receptor potency were obtained by substituting both Tyr1 and Thr5 at the N-terminal portion of N/OFQ(1-13)-NH2 with the noncanonical amino acid Dmt. [Dmt1,5]N/OFQ(1-13)-NH2 has been identified as the most potent dual NOP/mu receptor peptide agonist so far described. Experimental data have been complemented by in silico studies to shed light on the molecular mechanisms by which the peptide binds the active form of the mu receptor. Finally, the compound exerted antitussive effects in an in vivo model of cough.


Assuntos
Peptídeos/química , Receptores Opioides mu/agonistas , Receptores Opioides/agonistas , Animais , Sítios de Ligação , Tosse/induzido quimicamente , Tosse/tratamento farmacológico , Modelos Animais de Doenças , Cobaias , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Receptores Opioides/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Receptor de Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...