Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24622, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312642

RESUMO

Leishmaniases are infectious-parasitic diseases that impact public health around the world. Antileishmanial drugs presented toxicity and increase in parasitic resistance. Studies with natural products show an alternative to this effect, and several metabolites have demonstrated potential in the treatment of various diseases. Terminalia catappa is a plant species with promising pharmaceutical properties. The objective of this work was to evaluate the therapeutic potential of extracts and fractions of T. catappa on Leishmania amazonensis and investigate the immunomodulatory mechanisms associated with its action. In anti-Leishmania assays, the ethyl acetate fraction exhibited activity against promastigotes (IC50 86.07 ± 1.09 µg/mL) and low cytotoxicity (CC50 517.70 ± 1.68 µg/mL). The ethyl acetate fraction also inhibited the intracellular parasite (IC50 25.74 ± 1.08 µg/mL) with a selectivity index of 20.11. Treatment with T. catappa ethyl acetate fraction did not alter nitrite production by peritoneal macrophages stimulated with L. amazonensis, although there was a decrease in unstimulated macrophages treated at 50 µg/mL (p = 0.0048). The T. catappa ethyl acetate fraction at 100 µg/mL increased TNF-α levels (p = 0.0238) and downregulated HO-1 (p = 0.0030) and ferritin (p = 0.0002) gene expression in L. amazonensis-stimulated macrophages. Additionally, the total flavonoid and ellagic acid content for ethyl acetate fraction was 13.41 ± 1.86 mg QE/g and 79.25 mg/g, respectively. In conclusion, the T. catappa ethyl acetate fraction showed leishmanicidal activity against different forms of L. amazonensis and displayed immunomodulatory mechanisms, including TNF-α production and expression of pro and antioxidant genes.

2.
Pharmaceutics ; 15(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765261

RESUMO

Leishmaniasis is a complex disease caused by infection with different Leishmania parasites. The number of medications used for its treatment is still limited and the discovery of new drugs is a valuable approach. In this context, here we describe the in vitro leishmanicidal activity and the in silico interaction between trypanothione reductase (TryR) and (-)-5-demethoxygrandisin B from the leaves of Virola surinamensis (Rol.) Warb. The compound (-)-5-demethoxygrandisin B was isolated from V. surinamensis leaves, a plant found in the Brazilian Amazon, and it was characterized as (7R,8S,7'R,8'S)-3,4,5,3',4'-pentamethoxy-7,7'-epoxylignan. In vitro antileishmanial activity was examined against Leishmania amazonensis, covering both promastigote and intracellular amastigote phases. Cytotoxicity and nitrite production were gauged using BALB/c peritoneal macrophages. Moreover, transmission electron microscopy was applied to probe ultrastructural alterations, and flow cytometry assessed the shifts in the mitochondrial membrane potential. In silico methods such as molecular docking and molecular dynamics assessed the interaction between the most stable configuration of (-)-5-demethoxygrandisin B and TryR from L. infantum (PDB ID 2JK6). As a result, the (-)-5-demethoxygrandisin B was active against promastigote (IC50 7.0 µM) and intracellular amastigote (IC50 26.04 µM) forms of L. amazonensis, with acceptable selectivity indexes. (-)-5-demethoxygrandisin B caused ultrastructural changes in promastigotes, including mitochondrial swelling, altered kDNA patterns, vacuoles, vesicular structures, autophagosomes, and enlarged flagellar pockets. It reduced the mitochondria membrane potential and formed bonds with important residues in the TryR enzyme. The molecular dynamics simulations showed stability and favorable interaction with TryR. The compound targets L. amazonensis mitochondria via TryR enzyme inhibition.

3.
Biology (Basel) ; 12(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37508328

RESUMO

Chagas disease is a severe infectious and parasitic disease caused by the protozoan Trypanosoma cruzi and considered a public health problem. Chemotherapeutics are still the main means of control and treatment of the disease, however with some limitations. As an alternative treatment, plants have been pointed out due to their proven pharmacological properties. Many studies carried out with Terminalia catappa have shown several biological activities, but its effect against T. cruzi is still unknown. The objective of this work is to evaluate the therapeutic potential of extracts and fractions obtained from T. catappa on the parasite T. cruzi, in addition to analyzing its antioxidant activity. T. catappa ethyl acetate fraction were produced and submitted the chemical characterization by Liquid Chromatography Coupled to Mass Spectrometry (LC-MS). From all T. catappa extracts and fractions evaluated, the ethyl acetate and the aqueous fraction displayed the best antioxidant activity by the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging method (IC50 of 7.77 ± 1.61 and 5.26 ± 1.26 µg/mL respectively), and by ferric ion reducing (FRAP) method (687.61 ± 0.26 and 1009.32 ± 0.13 µM of Trolox equivalent/mg extract, respectively). The ethyl acetate fraction showed remarkable T. cruzi inhibitory activity with IC50 of 8.86 ± 1.13, 24.91 ± 1.15 and 85.01 ± 1.21 µg/mL against epimastigotes, trypomastigotes and intracellular amastigotes, respectively, and showed no cytotoxicity for Vero cells (CC50 > 1000 µg/mL). The treatment of epimastigotes with the ethyl acetate fraction led to drastic ultrastructural changes such as the loss of cytoplasm organelles, cell disorganization, nucleus damage and the loss of integrity of the parasite. This effect could be due to secondary compounds present in this extract, such as luteolin, kaempferol, quercetin, ellagic acid and derivatives. The ethyl acetate fraction obtained from T. catappa leaves can be an effective alternative in the treatment and control of Chagas disease, and material for further investigations.

4.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174010

RESUMO

Euterpe oleracea (açaí) fruit has approximately 15% pulp, which is partly edible and commercialized, and 85% seeds. Although açaí seeds are rich in catechins-polyphenolic compounds with antioxidant, anti-inflammatory, and antitumor effects-almost 935,000 tons/year of seeds are discarded as industrial waste. This work evaluated the antitumor properties of E. oleracea in vitro and in vivo in a solid Ehrlich tumor in mice. The seed extract presented 86.26 ± 0.189 mg of catechin/g of extract. The palm and pulp extracts did not exhibit in vitro antitumor activity, while the fruit and seed extracts showed cytotoxic effects on the LNCaP prostate cancer cell line, inducing mitochondrial and nuclear alterations. Oral treatments were performed daily at 100, 200, and 400 mg/kg of E. oleracea seed extract. The tumor development and histology were evaluated, along with immunological and toxicological parameters. Treatment at 400 mg/kg reduced the tumor size, nuclear pleomorphism, and mitosis figures, increasing tumor necrosis. Treated groups showed cellularity of lymphoid organs comparable to the untreated group, suggesting less infiltration in the lymph node and spleen and preservation of the bone marrow. The highest doses reduced IL-6 and induced IFN-γ, suggesting antitumor and immunomodulatory effects. Thus, açaí seeds can be an important source of compounds with antitumor and immunoprotective properties.

5.
Int J Pharm ; 636: 122864, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934883

RESUMO

Epoxy-α-lapachone (ELAP), an oxirane-functionalized molecule synthesized from naturally occurring lapachol, has shown promising activity against murine infection with Leishmania (Leishmania) amazonensis. Herein, we report the successful development of oil-in-water-type (o/w) microemulsions (ME) loaded with ELAP (ELAP-ME) using Capmul MCM, Labrasol, and PEG 400. Stability studies revealed that ELAP-ME (100 µg/mL of ELAP), which was comprised of globule size smaller than 120.4 ± 7.7 nm, displayed a good stability profile over 73 days. ELAP-ME had an effect in BALB/c mice infected with L. (L.) amazonensis, causing reductions in paw lesions after two weeks of treatment (∼2-fold) when compared to untreated animals. Furthermore, there was also a reduction in the parasite load both in the footpad (60.3%) and in the lymph nodes (31.5%). Based on these findings, ELAP-ME emerges as a promising treatment for tegumentar leishmaniasis.


Assuntos
Leishmania , Leishmaniose , Animais , Camundongos , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Camundongos Endogâmicos BALB C , Pele/parasitologia , Inibidores da Topoisomerase II/uso terapêutico
6.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983046

RESUMO

Leishmaniasis represents a complex of diseases with a broad clinical spectrum and epidemiological diversity, considered a major public health problem. Although there is treatment, there are still no vaccines for cutaneous leishmaniasis. Because Leishmania spp. is an intracellular protozoan with several escape mechanisms, a vaccine must provoke cellular and humoral immune responses. Previously, we identified the Leishmania homolog of receptors for activated C kinase (LACK) and phosphoenolpyruvate carboxykinase (PEPCK) proteins as strong immunogens and candidates for the development of a vaccine strategy. The present work focuses on the in silico prediction and characterization of antigenic epitopes that might interact with mice or human major histocompatibility complex class I. After immunogenicity prediction on the Immune Epitope Database (IEDB) and the Database of MHC Ligands and Peptide Motifs (SYFPEITHI), 26 peptides were selected for interaction assays with infected mouse lymphocytes by flow cytometry and ELISpot. This strategy identified nine antigenic peptides (pL1-H2, pPL3-H2, pL10-HLA, pP13-H2, pP14-H2, pP15-H2, pP16-H2, pP17-H2, pP18-H2, pP26-HLA), which are strong candidates for developing a peptide vaccine against leishmaniasis.


Assuntos
Leishmania mexicana , Leishmania , Leishmaniose Cutânea , Humanos , Animais , Camundongos , Epitopos , Antígenos de Histocompatibilidade Classe I , Antígenos HLA , Leishmania/metabolismo , Peptídeos/química , Vacinas de Subunidades Antigênicas , Complexo Principal de Histocompatibilidade
7.
Front Cell Infect Microbiol ; 12: 974910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093206

RESUMO

Leishmaniasis represents a serious world health problem, with 1 billion people being exposed to infection and a broad spectrum of clinical manifestations with a potentially fatal outcome. Based on the limitations observed in the treatment of leishmaniasis, such as high cost, significant adverse effects, and the potential for drug resistance, the aim of the present study was to evaluate the leishmanicidal activity of the compounds pseurotin A and monomethylsulochrin isolated from the biomass extract of Aspergillus sp. The chromatographic profiles of the extract were determined by high-performance liquid chromatography coupled with a diode-array UV-Vis detector (HPLC-DAD-UV), and the molecular identification of the pseurotin A and monomethylsulochrin were carried out by electrospray ionization mass spectrometry in tandem (LC-ESI-MS-MS) and nuclear magnetic resonance (NMR). Antileishmanial activity was assayed against promastigote and intracellular amastigote of Leishmania amazonensis. As a control, cytotoxicity assays were performed in non-infected BALB/c peritoneal macrophages. Ultrastructural alterations in parasites were evaluated by transmission electron microscopy. Changes in mitochondrial membrane potential were determined by flow cytometry. Only monomethylsulochrin inhibited the promastigote growth (IC50 18.04 ± 1.11 µM), with cytotoxicity to peritoneal macrophages (CC50 5.09 91.63 ± 1.28 µM). Activity against intracellular amastigote forms (IC50 5.09 ± 1.06 µM) revealed an increase in antileishmanial activity when compared with promastigotes. In addition to a statistically significant reduction in the evaluated infection parameters, monomethylsulochrin altered the ultrastructure of the promastigote forms with atypical vacuoles, electron-dense corpuscles in the cytoplasm, changes at the mitochondria outer membrane and abnormal disposition around the kinetoplast. It was showed that monomethylsulochrin leads to a decrease in the mitochondrial membrane potential (25.9%, p = 0.0286). Molecular modeling studies revealed that monomethylsulochrin can act as inhibitor of sterol 14-alpha-demethylase (CYP51), a therapeutic target for human trypanosomiasis and leishmaniasis. Assessed for its drug likeness, monomethylsulochrin follows the Lipinski Rule of five and Ghose, Veber, Egan, and Muegge criteria. Furthermore, monomethylsulochrin can be used as a reference in the development of novel and therapeutically useful antileishmanial agents.


Assuntos
Antiprotozoários , Leishmania mexicana , Leishmania , Leishmaniose , Animais , Antiprotozoários/química , Aspergillus , Biomassa , Humanos , Leishmaniose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia
8.
Parasitol Int ; 86: 102458, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509671

RESUMO

Leishmaniasis chemotherapy is a bottleneck in disease treatment. Although available, chemotherapy is limited, toxic, painful, and does not lead to parasite clearance, with parasite resistance also being reported. Therefore, new therapeutic options are being investigated, such as plant-derived anti-parasitic compounds. Amentoflavone is the most common biflavonoid in the Selaginella genus, and its antileishmanial activity has already been described on Leishmania amazonensis intracellular amastigotes but its direct action on the parasite is controversial. In this work we demonstrate that amentoflavone is active on L. amazonensis promastigotes (IC50 = 28.5 ± 2.0 µM) and amastigotes. Transmission electron microscopy of amentoflavone-treated promastigotes showed myelin-like figures, autophagosomes as well as enlarged mitochondria. Treated parasites also presented multiple lipid droplets and altered basal body organization. Similarly, intracellular amastigotes presented swollen mitochondria, membrane fragments in the lumen of the flagellar pocket as well as autophagic vacuoles. Flow cytometric analysis after TMRE staining showed that amentoflavone strongly decreased mitochondrial membrane potential. In silico analysis shows that amentoflavone physic-chemical, drug-likeness and bioavailability characteristics suggest it might be suitable for oral administration. We concluded that amentoflavone presents a direct effect on L. amazonensis parasites, causing mitochondrial dysfunction and parasite killing. Therefore, all results point for the potential of amentoflavone as a promising candidate for conducting advanced studies for the development of drugs against leishmaniasis.


Assuntos
Biflavonoides/farmacologia , Leishmania mexicana/fisiologia , Mitocôndrias/fisiologia , Selaginellaceae/química , Biflavonoides/química , Leishmania mexicana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tripanossomicidas
9.
J Med Chem ; 64(17): 12691-12704, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34427442

RESUMO

1,2,3-Triazole is one of the most flexible chemical scaffolds broadly used in various fields. Here, we report the antileishmanial activity of 1,2,3-triazole derivatives, the ultrastructural alterations induced by their treatment, and the nitric oxide (NO) modulation effect on their efficacy against Leishmania amazonensis in vitro infection. After the screening of eleven compounds, compound 4 exhibited better results against L. amazonensis promastigotes (IC50 = 15.52 ± 3.782 µM) and intracellular amastigotes (IC50 = 4.10 ± 1.136 µM), 50% cytotoxicity concentration at 84.01 ± 3.064 µM against BALB/c peritoneal macrophages, and 20.49-fold selectivity for the parasite over the cells. Compound 4 induced ultrastructural mitochondrial alterations and lipid inclusions in L. amazonensis promastigotes, upregulated tumor necrosis factor α, interleukin (IL)-1ß, IL-6, IL-12, and IL-10 messenger RNA expressions, and enhanced the NO production, verified by nitrite (p = 0.0095) and inducible nitric oxide synthase expression (p = 0.0049) quantification, which played an important role in its activity against intramacrophagic L. amazonensis. In silico prediction in association with antileishmanial activity results showed compound 4 as a hit compound with promising potential for further studies of new leishmaniasis treatment options.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Óxido Nítrico/metabolismo , Triazóis/farmacologia , Animais , Antiprotozoários/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Triazóis/química
10.
Front Pharmacol ; 12: 703985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354593

RESUMO

Acknowledging the need of identifying new compounds for the treatment of leishmaniasis, this study aimed to evaluate, from in vitro trials, the activity of flavones from Arrabidaea chica against L. amazonensis. The chromatographic profiles of the hydroethanolic extract and a flavone-rich fraction (ACFF) from A. chica were determined by high-performance liquid chromatography coupled with a diode-array UV-Vis detector (HPLC-DAD-UV) and electrospray ionization mass spectrometry in tandem (LC-ESI-MS-MS). The flavones luteolin (1) and apigenin (2), isolated from chromatographic techniques and identified by Nuclear Magnetic Resonance of 1H and 13C, were also quantified in ACFF, showing 190.7 mg/g and apigenin 12.4 mg/g, respectively. The other flavones were identified by comparing their spectroscopic data with those of the literature. The in vitro activity was assayed against promastigotes and intramacrophagic amastigote forms of L. amazonensis. Cytotoxicity tests were performed with peritoneal macrophages of BALB/c mice. Nitrite quantification was performed with Griess reagent. Ultrastructural investigations were obtained by transmission electron microscopy. Anti-Leishmania assays indicated that the IC50 values for ACFF, apigenin, and luteolin were obtained at 40.42 ± 0.10 and 31.51 ± 1.13 µg/mL against promastigotes, respectively. ACFF and luteolin have concentration-dependent cytotoxicity. ACFF and luteolin also inhibited the intra-macrophagic parasite (IC50 3.575 ± 1.13 and 11.78 ± 1.24 µg/mL, respectively), with a selectivity index of 11.44 for ACFF. Promastigotes exposed to ACFF and luteolin exhibited ultrastructural changes, such as intense cytoplasm vacuolization and mitochondrial swelling. These findings data evidence the antileishmanial action of flavone-rich fractions of A. chica against L. amazonensis, encouraging further studies.

11.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199336

RESUMO

The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin's antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.


Assuntos
Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Ascomicetos/química , Macrófagos Peritoneais/citologia , Xantonas/farmacologia , Animais , Antibacterianos/química , Antiprotozoários/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Biomassa , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células Hep G2 , Humanos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Xantonas/química
12.
Foods ; 10(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066479

RESUMO

Açaí berry is a fruit from the tree commonly known as açaízeiro (Euterpe oleracea Mart.) originated from the Amazonian region and widely consumed in Brazil. There are several reports of the anti-inflammatory activity of its pulp and few data about the seed's potential in inflammation control. This work aimed to evaluate the effect of catechin-rich açaí extract on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and carrageenan-induced paw edema. The treatment with E. oleracea ethyl acetate extract (EO-ACET) was used in an in vitro model performed with macrophages stimulated by LPS, in which pro-inflammatory markers were evaluated, and in an in vivo model of acute inflammation, in which edema inhibition was evaluated. EO-ACET showed an absence of endotoxins, and did not display cytotoxic effects in RAW 264.7 cells. LPS-stimulated cells treated with EO-ACET displayed low levels of nitrite and interleukins (IL's), IL-1ß, IL-6 and IL-12, when compared to untreated cells. EO-ACET treatment was able to inhibit carrageenan-induced paw edema at 500 and 1000 mg/kg, in which no acute inflammatory reaction or low mast cell counts were observed by histology at the site of inoculation of λ-carrageenan. These findings provide more evidence to support further studies with E. oleracea seeds for the treatment of inflammation.

13.
Front Cell Infect Microbiol ; 11: 615814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718267

RESUMO

Treatment of leishmaniasis is a challenging subject. Although available, chemotherapy is limited, presenting toxicity and adverse effects. New drugs with antileishmanial activity are being investigated, such as antiparasitic compounds derived from plants. In this work, we investigated the antileishmanial activity of the biflavonoid amentoflavone on the protozoan Leishmania amazonensis. Although the antileishmanial activity of amentoflavone has already been reported in vitro, the mechanisms involved in the parasite death, as well as its action in vivo, remain unknown. Amentoflavone demonstrated activity on intracellular amastigotes in macrophages obtained from BALB/c mice (IC50 2.3 ± 0.93 µM). No cytotoxicity was observed and the selectivity index was estimated as greater than 10. Using BALB/c mice infected with L. amazonensis we verified the effect of an intralesional treatment with amentoflavone (0.05 mg/kg/dose, in a total of 5 doses every 4 days). Parasite quantification demonstrated that amentoflavone reduced the parasite load in treated footpads (46.3% reduction by limiting dilution assay and 56.5% reduction by Real Time Polymerase Chain Reaction). Amentoflavone decreased the nitric oxide production in peritoneal macrophages obtained from treated animals. The treatment also increased the expression of ferritin and decreased iNOS expression at the site of infection. Furthemore, it increased the production of ROS in peritoneal macrophages infected in vitro. The increase of ROS in vitro, associated with the reduction of NO and iNOS expression in vivo, points to the antioxidant/prooxidant potential of amentoflavone, which may play an important role in the balance between inflammatory and anti-inflammatory patterns at the infection site. Taken together these results suggest that amentoflavone has the potential to be used in the treatment of cutaneous leishmaniasis, working as an ally in the control and development of the lesion.


Assuntos
Biflavonoides , Leishmania , Leishmaniose Cutânea , Leishmaniose , Animais , Antioxidantes , Biflavonoides/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio
14.
Artigo em Inglês | MEDLINE | ID: mdl-33688364

RESUMO

Syzygium aromaticum has a diversity of biological activities due to the chemical compounds found in its plant products such as total phenolic compounds and flavonoids. The present work describes the chemical analysis and antimicrobial, antioxidant, and antitrypanosomal activity of the essential oil of S. aromaticum. Eugenol (53.23%) as the major compound was verified by gas chromatography-mass spectrometry. S. aromaticum essential oil was more effective against S. aureus (MIC 50 µg/mL) than eugenol (MIC 250 µg/mL). Eugenol presented higher antioxidant activity than S. aromaticum essential oil, with an EC50 of 12.66 and 78.98 µg/mL, respectively. S. aromaticum essential oil and eugenol exhibited Trypanosoma cruzi inhibitory activity, with IC50 of 28.68 ± 1.073 and 31.97 ± 1.061 µg/mL against epimastigotes and IC50 of 64.51 ± 1.658 and 45.73 ± 1.252 µg/mL against intracellular amastigotes, respectively. Both compounds presented low cytotoxicity, with S. aromaticum essential oil displaying 15.5-fold greater selectivity for the parasite than the cells. Nitrite levels in T. cruzi-stimulated cells were reduced by essential oil (47.01%; p = 0.002) and eugenol (48.05%; p = 0.003) treatment. The trypanocidal activity of S. aromaticum essential oil showed that it is reasonable to use it in future research in the search for new therapeutic alternatives for trypanosomiasis.

15.
Biomed Pharmacother ; 133: 111025, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254018

RESUMO

The present study aimed to evaluate the antileishmanial effect, the mechanisms of action and the association with miltefosine of Vernonia brasiliana essential oil against Leishmania infantum promastigotes. This essential oil was obtained by hydrodistillation and its chemical composition was determined by gas chromatography-mass spectrometry (GC-MS). The antileishmanial activity against L. infantum promastigotes and cytotoxicity on DH82 cells were evaluated by MTT colorimetric assay. Ultrastructural alterations were evaluated by transmission electron microscopy. Changes in mitochondrial membrane potential, in the production of reactive oxygen species, and analysis of apoptotic events were determined by flow cytometry. The association between the essential oil and miltefosine was evaluated using the modified isobologram method. The most abundant component of the essential oil was ß-caryophyllene (21.47 %). Anti-Leishmania assays indicated an IC50 of 39.01 ±â€¯1.080 µg/mL for promastigote forms after 72 h of treatment. The cytotoxic concentration for DH82 cells was 63.13 ±â€¯1.211 µg/mL after 24 h of treatment. The effect against L. infantum was proven through the ultrastructural changes caused by the oil, such as kinetoplast and mitochondrial swelling, vesicles in the flagellar pocket, discontinuity of the nuclear membrane, nuclear fragmentation and condensation, and loss of organelles. It was observed that the oil leads to a decrease in the mitochondrial membrane potential (35.10 %, p = 0.0031), increased reactive oxygen species production, and cell death by late apoptosis (17.60 %, p = 0.020). The combination of the essential oil and miltefosine exhibited an antagonistic effect. This study evidences the antileishmanial action of V. brasiliana essential oil against L. infantum promastigotes.


Assuntos
Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Vernonia , Animais , Antiprotozoários/isolamento & purificação , Antiprotozoários/toxicidade , Linhagem Celular , Cães , Interações Medicamentosas , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/metabolismo , Leishmania infantum/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/toxicidade , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/toxicidade , Sesquiterpenos Policíclicos/isolamento & purificação , Sesquiterpenos Policíclicos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Vernonia/química
16.
Front Immunol ; 11: 566476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329529

RESUMO

Background: Considering the complexity of the factors involved in the immunopathology of Chagas disease, which influence the Chagas' disease pathogenesis, anti-T. cruzi immune response, and chemotherapy outcome, further studies are needed to improve our understanding about these relationships. On this way, in this article we analyzed the host genetic influence on hematological, histopathological and immunological aspects after T. cruzi infection. Methods: BALB/c and A mice were intragastrically infected with T. cruzi SC2005 strain, isolated from a patient of an outbreak of Chagas disease. Parameters such as parasite load, survival rates, cytokines production, macrophages, T and B cell frequencies, and histopathology analysis were carried out. Results: BALB/c mice presented higher parasitemia and mortality rates than A mice. Both mouse lineages exhibited hematological alterations suggestive of microcytic hypochromic anemia and histopathological alterations in stomach, heart and liver. The increase of CD8+ T cells, in heart, liver and blood, and the increase of CD19+ B cells, in liver, associated with a high level of proinflammatory cytokines (IL-6, TNF-α, IFN-γ), confer a resistance profile to the host. Although BALB/c animals exhibited the same findings observed in A mice, the response to infection occurred later, after a considerable parasitemia increase. By developing an early response to the infection, A mice were found to be less susceptible to T. cruzi SC2005 infection. Conclusions: Host genetics background shaping the response to infection. The early development of a cytotoxic cellular response profile with the production of proinflammatory cytokines is important to lead a less severe manifestation of Chagas disease.


Assuntos
Doença de Chagas , Animais , Doença de Chagas/genética , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Citocinas/imunologia , Feminino , Coração/parasitologia , Fígado/parasitologia , Fígado/patologia , Camundongos Endogâmicos , Miocárdio/patologia , Carga Parasitária , Parasitemia/genética , Parasitemia/imunologia , Parasitemia/patologia , Especificidade da Espécie , Estômago/parasitologia , Estômago/patologia
17.
Front Microbiol ; 11: 1986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983013

RESUMO

Leishmaniases are a complex of diseases with a broad spectrum of clinical forms, which depend on the parasite species, immunological status, and genetic background of the host. In the Leishmania major model, susceptibility is associated with the Th2 pattern of cytokines production, while resistance is associated with Th1 response. However, the same dichotomy does not occur in L. amazonensis-infected mice. Cytokines are key players in these diseases progression, while the extracellular matrix (ECM) components participate in the process of parasite invasion as well as lesion healing. In this article, we analyzed the influence of host genetics on the expression of cytokines, inducible nitric oxide synthase (iNOS), and ECM proteins, as well as the parasite load in mice with different genetic backgrounds infected by L. amazonensis. C57BL/10 and C3H/He mice were subcutaneously infected with 106 L. amazonensis promastigotes. Lesion kinetics, parasite load, cytokines, iNOS, and ECM proteins expression were measured by quantitative PCR (qPCR) in the footpad, draining lymph nodes, liver, and spleen at early (24 h and 30 days) and late phase (120 and 180 days) of infection. Analysis of lesion kinetics showed that C57BL/10 mice developed ulcerative lesions at the inoculation site after L. amazonensis infection, while C3H/He showed slight swelling in the footpad 180 days after infection. C57BL/10 showed progressive enhancement of parasite load in all analyzed organs, while C3H/He mice showed extremely low parasite loads. Susceptible C57BL/10 mice showed high levels of TGF-ß mRNA in the footpad early in infection and high levels of proinflammatory cytokines mRNA (IL-12, TNF-α, and IFN-γ) and iNOS in the late phase of the infection. There is an association between increased expression of fibronectin, laminin, collagen III and IV, and TGF-ß. On the other hand, resistant C3H/He mice presented a lower repertory of cytokines mRNA expression when compared with susceptible C57BL/10 mice, basically producing TNF-α, collagen IV, and laminin early in infection. The findings of our study indicate that L. amazonensis infection induces different cytokine expression in resistant and susceptible mice but not like the L. major model. An organ-compartmentalized cytokine response was observed in our model. Host genetics determine this response, which modulates ECM proteins expression.

18.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961842

RESUMO

The current standard treatment for leishmaniasis has remained the same for over 100 years, despite inducing several adverse effects and increasing cases of resistance. In this study we evaluated the in vitro antileishmanial activity of 1,4-disubstituted-1,2,3 triazole compounds and carried out in silico predictive study of their pharmacokinetic and toxicity properties. Ten compounds were analyzed, with compound 6 notably presenting IC50: 14.64 ± 4.392 µM against promastigotes, IC50: 17.78 ± 3.257 µM against intracellular amastigotes, CC50: 547.88 ± 3.256 µM against BALB/c peritoneal macrophages, and 30.81-fold selectivity for the parasite over the cells. It also resulted in a remarkable decrease in all the parameters of in vitro infection. Ultrastructural analysis revealed lipid corpuscles, a nucleus with discontinuity of the nuclear membrane, a change in nuclear chromatin, and kinetoplast swelling with breakdown of the mitochondrial cristae and electron-density loss induced by 1,4-disubstituted-1,2,3-triazole treatment. In addition, compound 6 enhanced 2.3-fold the nitrite levels in the Leishmania-stimulated macrophages. In silico pharmacokinetic prediction of compound 6 revealed that it is not recommended for topical formulation cutaneous leishmaniasis treatment, however the other properties exhibited results that were similar or even better than miltefosine, making it a good candidate for further in vivo studies against Leishmania parasites.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Macrófagos Peritoneais/efeitos dos fármacos , Triazóis/farmacocinética , Animais , Células Cultivadas , Simulação por Computador , Feminino , Concentração Inibidora 50 , Leishmania mexicana/ultraestrutura , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Nitritos/análise , Triazóis/química , Triazóis/farmacologia , Triazóis/toxicidade
19.
Molecules ; 25(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756445

RESUMO

Arrabidaea chica Verlot (crajiru) is a plant used in folk medicine as an astringent, anti-inflammatory, wound healing and to treat fungal and viral diseases such as measles chickenpox and herpes. Arrabidaea chica has several morphotypes recognized but little is known about its chemical variability. In the present study the anthocyanidin profile of A. chica morphotypes collected in two seasons (summer and winter) have been examined and their activity against Leishmania infection compared. High-performance liquid chromatography coupled to a diode-array detector (HPLC-DAD-UV) and by tandem mass spectrometry with electrospray ionization (ESI-MS/MS) were used for anthocyanidin separation and identification. Antileishmanial activity was measured against promastigote forms of Leishmania amazonensis. Multivariate analysis, principal component analysis (PCA) and Pearson's correlation were performed to classify morphotypes accordingly to their anthocyanidin profile. The presence of 6,7,3',4'-tetrahydroxy-5-methoxyflavylium (3'-hydroxy-carajurone) (1), carajurone (2), 6,7,3'-trihydroxy-5,4'-dimethoxy-flavylium (3'-hydroxy-carajurin) (3) and carajurin (4), and three unidentified anthocyanidins were detected. Two different groups were recognized: group I containing 3'-hydroxy-carajurone; and group II with high content of carajurin. Among anthocyanidins identified in the extracts, only carajurin showed significant statistical correlation (p = 0.030) with activity against L. amazonensis. Carajurin could thus be considered as a pharmacological marker for the antileishmanial potential of the species.


Assuntos
Antocianinas/química , Antiprotozoários/farmacologia , Bignoniaceae/química , Leishmania mexicana/efeitos dos fármacos , Antocianinas/isolamento & purificação , Antocianinas/farmacologia , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Bignoniaceae/metabolismo , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Análise de Componente Principal , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Proantocianidinas/farmacologia , Estações do Ano , Espectrofotometria , Espectrometria de Massas em Tandem
20.
Antibiotics (Basel) ; 10(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396612

RESUMO

Aniba rosaeodora is one of the most widely used plants in the perfumery industry, being used as medicinal plant in the Brazilian Amazon. This work aimed to evaluate the chemical composition of A. rosaeodora essential oil and its biological activities. A. rosaeodora essential oil presented linalool (93.60%) as its major compound. The A. rosaeodora essential oil and linalool showed activity against all the bacteria strains tested, standard strains and marine environment bacteria, with the lower minimum inhibitory concentration being observed for S. aureus. An efficient antioxidant activity of A. rosaeodora essential oil and linalool (EC50: 15.46 and 6.78 µg/mL, respectively) was evidenced by the inhibition of the 2,2-azinobis- (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical. The antitrypanosomal activity of A. rosaeodora essential oil and linalool was observed at high concentrations against epimatigote forms (inhibitory concentration for 50% of parasites (IC50): 150.5 ± 1.08 and 198.6 ± 1.12 µg/mL, respectively), and even higher against intracellular amastigotes of T. cruzi (IC50: 911.6 ± 1.15 and 249.6 ± 1.18 µg/mL, respectively). Both A. rosaeodora essential oil and linalool did not exhibit a cytotoxic effect in BALB/c peritoneal macrophages, and both reduced nitrite levels in unstimulated cells revealing a potential effect in NO production. These data revealed the pharmacological potential of A. rosaeodora essential oil and linalool, encouraging further studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...