Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 377-385, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112296

RESUMO

Mycobacterium tuberculosis (Mtb) is one of history's most successful human pathogens. By subverting typical immune responses, Mtb can persist within a host until conditions become favorable for growth and proliferation. Virulence factors that enable mycobacteria to modulate host immune systems include a suite of mannose-containing glycolipids: phosphatidylinositol mannosides, lipomannan, and lipoarabinomannan (LAM). Despite their importance, tools for their covalent capture, modification, and imaging are limited. Here, we describe a chemical biology strategy to detect and visualize these glycans. Our approach, biosynthetic incorporation, is to synthesize a lipid-glycan precursor that can be incorporated at a late-stage step in glycolipid biosynthesis. We previously demonstrated selective mycobacterial arabinan modification by biosynthetic incorporation using an exogenous donor. This report reveals that biosynthetic labeling is general and selective: it allows for cell surface mannose-containing glycolipid modification without nonspecific labeling of mannosylated glycoproteins. Specifically, we employed azido-(Z,Z)-farnesyl phosphoryl-ß-d-mannose probes and took advantage of the strain-promoted azide-alkyne cycloaddition to label and directly visualize the localization and dynamics of mycobacterial mannose-containing glycolipids. Our studies highlight the generality and utility of biosynthetic incorporation as the probe structure directs the selective labeling of distinct glycans. The disclosed agents allowed for direct tracking of the target immunomodulatory glycolipid dynamics in cellulo. We anticipate that these probes will facilitate investigating the diverse biological roles of these glycans.


Assuntos
Glicolipídeos , Mycobacterium tuberculosis , Humanos , Glicolipídeos/química , Manose/metabolismo , Lipopolissacarídeos/metabolismo , Polissacarídeos/química , Mycobacterium tuberculosis/metabolismo
2.
J Am Chem Soc ; 143(40): 16337-16342, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606245

RESUMO

Glycans are ubiquitous and play important biological roles, yet chemical methods for probing their structure and function within cells remain limited. Strategies for studying other biomacromolecules, such as proteins, often exploit chemoselective reactions for covalent modification, capture, or imaging. Unlike amino acids that constitute proteins, glycan building blocks lack distinguishing reactivity because they are composed primarily of polyol isomers. Moreover, encoding glycan variants through genetic manipulation is complex. Therefore, we formulated a new, generalizable strategy for chemoselective glycan modification that directly takes advantage of cellular glycosyltransferases. Many of these enzymes are selective for the products they generate yet promiscuous in their donor preferences. Thus, we designed reagents with bioorthogonal handles that function as glycosyltransferase substrate surrogates. We validated the feasibility of this approach by synthesizing and testing probes of d-arabinofuranose (d-Araf), a monosaccharide found in bacteria and an essential component of the cell wall that protects mycobacteria, including Mycobacterium tuberculosis. The result is the first probe capable of selectively labeling arabinofuranose-containing glycans. Our studies serve as a platform for developing new chemoselective labeling agents for other privileged monosaccharides. This probe revealed an asymmetric distribution of d-Araf residues during mycobacterial cell growth and could be used to detect mycobacteria in THP1-derived macrophages.


Assuntos
Polissacarídeos
3.
J Am Chem Soc ; 141(23): 9262-9272, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31081628

RESUMO

Despite the ubiquity and importance of glycans in biology, methods to probe their structures in cells are limited. Mammalian glycans can be modulated using metabolic incorporation, a process in which non-natural sugars are taken up by cells, converted to nucleotide-sugar intermediates, and incorporated into glycans via biosynthetic pathways. These studies have revealed that glycan intermediates can be shunted through multiple pathways, and this complexity can be heightened in bacteria, as they can catabolize diverse glycans. We sought to develop a strategy that probes structures recalcitrant to metabolic incorporation and that complements approaches focused on nucleotide sugars. We reasoned that lipid-linked glycans, which are intermediates directly used in glycan biosynthesis, would offer an alternative. We generated synthetic arabinofuranosyl phospholipids to test this strategy in Corynebacterium glutamicum and Mycobacterium smegmatis, organisms that serve as models of Mycobacterium tuberculosis. Using a C. glutamicum mutant that lacks arabinan, we identified synthetic glycosyl donors whose addition restores cell wall arabinan, demonstrating that non-natural glycolipids can serve as biosynthetic intermediates and function in chemical complementation. The addition of an isotopically labeled glycan substrate facilitated cell wall characterization by NMR. Structural analysis revealed that all five known arabinofuranosyl transferases could process the exogenous lipid-linked sugar donor, allowing for the full recovery of the cell envelope. The lipid-based probe could also rescue wild-type cells treated with an inhibitor of cell wall biosynthesis. Our data indicate that surrogates of natural lipid-linked glycans can intervene in the cell's traditional workflow, indicating that biosynthetic incorporation is a powerful strategy for probing glycan structure and function.


Assuntos
Parede Celular/química , Corynebacterium glutamicum/química , Glicolipídeos/química , Mycobacterium smegmatis/química , Corynebacterium glutamicum/efeitos dos fármacos , Galactanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Mycobacterium smegmatis/efeitos dos fármacos , Polissacarídeos/química , Compostos de Espiro/farmacologia , Tiazinas/farmacologia
4.
J Funct Biomater ; 3(3): 514-27, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-24955630

RESUMO

The encapsulation of biomolecules in solid materials that retain the native properties of the molecule is a desired feature for the development of biosensors and biocatalysts. In the current study, protein entrapment in silica-based materials is explored using the sol-gel technique. This work surveys the effects of silica confinement on the structure of several model polypeptides, including apomyoglobin, copper-zinc superoxide dismutase, polyglutamine, polylysine, and type I antifreeze protein. Changes in the secondary structure of each protein following encapsulation are monitored by circular dichroism spectroscopy. In many cases, silica confinement reduces the fraction of properly-folded protein relative to solution, but addition of a secondary solute or modification of the silica surface leads to an increase in structure. Refinement of the glass surface by addition of a monosubstituted alkoxysilane during sol-gel processing is shown to be a valuable tool for testing the effects of surface chemistry on protein structure. Because silica entrapment prevents protein aggregation by isolating individual protein molecules in the pores of the glass material, one may monitor aggregation-prone polypeptides under solvent conditions that are prohibited in solution, as demonstrated with polyglutamine and a disease-related variant of superoxide dismutase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA