Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Animals (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731365

RESUMO

Diopatra neapolitana Delle Chiaje, 1841 (Annelida, Onuphidae) is one of the most exploited polychaete species in European waters, particularly in Ria de Aveiro, a coastal lagoon in mainland Portugal, where the overexploitation of this resource has led to a generalized decline of local populations. In an attempt to reduce the impact of harvesting, several management actions were implemented, but illegal poaching still fuels a parallel economy that threatens the sustainable use of this marine resource. The present study evaluated the combination of fatty acid profiles and elemental fingerprints of the whole body and jaws, respectively, of D. neapolitana collected from four harvesting locations within Ria de Aveiro in order to determine if their geographic origin could be correctly assigned post-harvesting. Results showed that both fatty acid profiles and elemental fingerprints differ significantly among locations, discriminating the geographic origin with higher accuracy when combining these two natural barcodes than when employing each individually. The present work can, therefore, contribute to the implementation of an effective management plan for the sustainable use of this marine resource, making it possible to detect if D. neapolitana was sourced from no-take zones and if it was collected from the place of origin claimed by live bait traders.

2.
Insects ; 15(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535359

RESUMO

World aquaculture is expected to continue to grow over the next few decades, which amplifies the need for a higher production of sustainable feed ingredients for aquatic animals. Insects are considered good candidates for aquafeed ingredients because of their ability to convert food waste into highly nutritional biomass. However, commercially available terrestrial insect species lack n-3 long-chain polyunsaturated fatty acids (LC-PUFAs), which are essential biomolecules for marine cultured species. Nevertheless, several coastal insect species feature LC-PUFAs in their natural fatty acid (FA) profile. Here, we analysed the lipidic profile of wild-caught seaweed fly Fucellia maritima, with a focus on their FA profile, to evaluate its potential to be used as an aquafeed ingredient, as well as to screen for the presence of pathogenic bacteria. Results showed that the flies had a total lipid content of 13.2% of their total dry weight. The main classes of phospholipids (PLs) recorded were phosphatidylethanolamines (PEs) (60.8%), followed by phosphatidylcholine (PC) (17.1%). The most abundant FA was palmitoleic acid (C16:0) with 34.9% ± 4.3 of total FAs, followed by oleic acid (C18:1) with 30.4% ± 2.3. The FA composition of the flies included essential fatty acids (EFAs) for both freshwater fish, namely linoleic acid (C18:2 n-6) with 3.4% ± 1.3 and alpha-linoleic acid (C18:3 n-3) with 3.4% ± 1.9, and marine fish, namely arachidonic acid (C20:4 n-6) with 1.1% ± 0.3 and eicosapentaenoic acid (C20:5 n-3) with 6.1% ± 1.2. The microbiological analysis found 9.1 colony-forming units per gram (CFU/g) of Enterobacteriaceae and no presence of Salmonella sp. was detected in a sample of 25 g of fresh weight. These findings indicate that Fucellia maritima biomass holds the potential to be used as an additional aquafeed ingredient due to its FA profile and the low count of pathogenic bacteria, which can contribute to the optimal growth of fish and shrimp with a low risk of pathogen transfer during the feed production chain.

3.
Plants (Basel) ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38498533

RESUMO

Salicornia ramosissima, commonly known as glasswort or sea asparagus, is a halophyte plant cultivated for human consumption that is often referred to as a sea vegetable rich in health-promoting n-3 fatty acids (FAs). Yet, the effect of abiotic conditions, such as salinity and temperature, on the FA profile of S. ramosissima remains largely unknown. These factors can potentially shape its nutritional composition and yield unique fatty acid signatures that can reveal its geographical origin. In this context, samples of S. ramosissima were collected from four different locations along the coastline of mainland Portugal and their FAs were profiled through gas chromatography-mass spectrometry. The lipid extracts displayed a high content of essential FAs, such as 18:2n-6 and 18:3n-3. In addition to an epoxide fatty acid exclusively identified in samples from the Mondego estuary, the relative abundance of FAs varied between origin sites, revealing that FA profiles can be used as site-specific lipid fingerprints. This study highlights the role of abiotic conditions on the nutritional profile of S. ramosissima and establishes FA profiling as a potential avenue to trace the geographic origin of this halophyte plant. Overall, the present approach can make origin certification possible, safeguard quality, and enhance consumers' trust in novel foods.

4.
Heliyon ; 10(4): e25872, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434016

RESUMO

The fraudulent mislabelling of seafood geographic origin has been growing due to complex supply chains and growing consumer demand. To address this issue, seafood traceability tools, such as those based on elemental fingerprints (EF) of bivalve shells, have been successfully used to confirm their harvesting location. However, despite the usefulness of these methodologies, there is still room for optimization. Therefore, this study evaluated the effects of a routine procedure during bivalve shells preparation for ICP-MS analysis - their pretreatment with H2O2 to remove organic components. More specifically, the present study evaluated the effects of H2O2 on i) the elemental fingerprints of shells of two bivalve species (Ruditapes philippinarum and Cerastoderma edule) from four different locations over the north-western and the western Iberian coast, and ii) their influence on the accuracy of models (based on the EF of shells) used to confirm the geographic origin of these species. Significant differences were observed between untreated and pretreated shells of R. philippinarum (p within location ranging from 0.0001 to 0.0011) and C. edule (p ranging from 0.0001 to 0.0007 for C. edule) for both their elemental fingerprints as a whole and several individual elements. The accuracy of the models employed to determine the origin of the two bivalve species, using i) untreated shells, ii) pretreated shells, and iii) both pretreated and untreated shells grouped per location, was high, with the models accurately predicting the geographic origin of 100, 90 and 95% of R. philippinarum and 95, 100 and 95% of C. edule, respectively. These results show that the shifts in the EF of bivalve shells promoted by treating them with H2O2 prior to ICP-MS analysis did not affect the accuracy of the models used to confirm the geographic origin of both bivalve species. Therefore, the need to pre-treat bivalve shells with H2O2 can be dismissed in future studies addressing the traceability of bivalves when using ICP-MS, thus contributing to reducing environmental impacts and economic costs associated with this procedure, as well as the time required to obtain results.

5.
Mar Drugs ; 22(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38393044

RESUMO

Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Humanos , Resíduos Industriais
6.
Mar Drugs ; 21(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132926

RESUMO

Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.


Assuntos
Quitina , Quitosana , Colágeno , Animais , Materiais Biocompatíveis/economia , Quitina/economia , Quitosana/economia , Cosméticos , Preparações Farmacêuticas , Frutos do Mar , Colágeno/economia
7.
Nat Cancer ; 4(11): 1575-1591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783803

RESUMO

Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.


Assuntos
Bivalves , Cardiidae , Leucemia , Neoplasias , Animais , Humanos , Cardiidae/genética , Evolução Clonal
8.
J Therm Biol ; 114: 103577, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37263039

RESUMO

Global projections predict significant increases in ocean temperature and changes in ocean chemistry, including salinity variations by 2100. This has led to a substantial interest in the study of thermal ecophysiology, as temperature is a major factor shaping marine ectotherm communities. However, responses to temperature may be influenced by other factors such as salinity, highlighting the relevance of multiple stressor studies. In the present work, we experimentally evaluated the thermal tolerance of the marine ragworm Hediste diversicolor under predicted global change scenarios. Organisms were subjected to an experimental trial under control (24 °C), and two temperature treatment scenarios (ocean warming +3 °C - (27 °C) and heat wave +6 °C - (30 °C)), combined with salinity variations (20 and 30) in a full factorial design for 29 days. Environmental data from the field were collected during 2019 and 2020. At day 30 post exposure, upper thermal limits (Critical Thermal Maximum - CTMax), thermal safety margins (TSM) and acclimation capacity were measured. Higher acclimation temperatures led to higher thermal tolerance limits, confirming that H. diversicolor features some physiological plasticity, acclimation capacity and a positive thermal safety margin. This margin was greater considering in situ temperature data from 2019 than maximum temperatures for 2020 (CTMax > maximum habitat temperature-MHT). Moreover, smaller organisms displayed higher upper thermal limits suggesting that thermal tolerance is size dependent. Ragworms subjected to higher salinity also showed a higher CTMax than those acclimated to lower salinity. However, temperature and salinity showed an additive effect on CTMax, as no significant interaction was detected. We conclude that H. diversicolor can easily acclimate to increased water temperature, independently of salinity variations. Given the key role of ragworms in food webs in estuaries and coastal lagoons, substrate bioturbation and aquaculture, this information is relevant to support conservation actions, optimize culture protocols and identify thermal resistant strains.


Assuntos
Aclimatação , Temperatura Alta , Aclimatação/fisiologia , Temperatura , Salinidade , Ecossistema
9.
Nanomaterials (Basel) ; 13(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299641

RESUMO

Mesoporous silica engineered nanomaterials are of interest to the industry due to their drug-carrier ability. Advances in coating technology include using mesoporous silica nanocontainers (SiNC) loaded with organic molecules as additives in protective coatings. The SiNC loaded with the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT), i.e., SiNC-DCOIT, is proposed as an additive for antifouling marine paints. As the instability of nanomaterials in ionic-rich media has been reported and related to shifting key properties and its environmental fate, this study aims at understanding the behaviour of SiNC and SiNC-DCOIT in aqueous media with distinct ionic strengths. Both nanomaterials were dispersed in (i) low- (ultrapure water-UP) and (ii) high- ionic strength media-artificial seawater (ASW) and f/2 medium enriched in ASW (f/2 medium). The morphology, size and zeta potential (ζP) of both engineering nanomaterials were evaluated at different timepoints and concentrations. Results showed that both nanomaterials were unstable in aqueous suspensions, with the initial ζP values in UP below -30 mV and the particle size varying from 148 to 235 nm and 153 to 173 nm for SiNC and SiNC-DCOIT, respectively. In UP, aggregation occurs over time, regardless of the concentration. Additionally, the formation of larger complexes was associated with modifications in the ζP values towards the threshold of stable nanoparticles. In ASW, SiNC and SiNC-DCOIT formed aggregates (<300 nm) independently of the time or concentration, while larger and heterogeneous nanostructures (>300 nm) were detected in the f/2 medium. The pattern of aggregation detected may increase engineering nanomaterial sedimentation rates and enhance the risks towards dwelling organisms.

10.
Plants (Basel) ; 12(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987012

RESUMO

Fucus vesiculosus is a brown seaweed with applications in the food, pharmaceutic, and cosmetic industries. Among its most valuable bioactive compounds are the pigment fucoxanthin and polysaccharides (e.g., fucoidans). In this study, we profiled the photosynthetic pigments and carbohydrates of F. vesiculosus from six locations along the Ílhavo Channel in the Iberian coastal lagoon of Ria de Aveiro, Portugal. Photosynthetic performance (Fv/Fm), pigment, and carbohydrate concentrations were similar between locations, despite differences in environmental factors, such as salinity and periods of exposure to desiccation. Concentration of total carbohydrates (neutral sugars + uronic acids) averaged 418 mg g-1 dw. Fucose was the second most abundant neutral sugar, with an average concentration of 60.7 mg g-1 dw, indicating a high content of fucoidans. Photosynthetic pigments included chlorophylls a and c, ß,ß-carotene, and the xanthophylls fucoxanthin, violaxanthin, antheraxanthin, and zeaxanthin. Concentrations of fucoxanthin were higher than those reported for most brown macroalgae, averaging 0.58 mg g-1 dw (65% of total carotenoids). This study indicates that F. vesiculosus from Ria de Aveiro is a valuable macroalgal resource for aquaculture companies operating in the region, with considerable potential to yield high-value bioactive compounds.

11.
Animals (Basel) ; 13(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36670832

RESUMO

Bleaching events associated with climate change are increasing worldwide, being a major threat to tropical coral reefs. Nonetheless, the indirect impacts promoted by the bleaching of organisms hosting photosynthetic endosymbionts, such as those impacting trophic interactions, have received considerably less attention by the scientific community. Bleaching significantly affects the nutritional quality of bleached organisms. The consequences promoted by such shifts remain largely overlooked, namely on specialized predators that have evolved to prey upon organisms hosting photosynthetic endosymbionts and benefit nutritionally, either directly or indirectly, from the available pool of photosynthates. In the present study, we advocate the use of the model predator-prey pair featuring the stenophagous nudibranch sea slug Berghia stephanieae that preys upon the photosymbiotic glass anemone Exaiptasia diaphana to study the impacts of bleaching on trophic interactions. These model organisms are already used in other research fields, and one may benefit from knowledge available on their physiology, omics, and culture protocols under controlled laboratory conditions. Moreover, B. stephanieae can thrive on either photosymbiotic or aposymbiotic (bleached) glass anemones, which can be easily maintained over long periods in the laboratory (unlike photosymbiotic corals). As such, one can investigate if and how nutritional shifts induced by bleaching impact highly specialized predators (stenophagous species), as well as if and how such effects cascade over consecutive generations. Overall, by using this model predator-prey pair one can start to truly unravel the trophic effects of bleaching events impacting coral reef communities, as well as their prevalence over time.

12.
Sci Total Environ ; 861: 160460, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36435249

RESUMO

Marine heatwaves (MHW) are threatening tropical coral reef ecosystems, leading to mass bleaching events worldwide. The combination of heat stress with high irradiance is known to shape the health and redox status of corals, but research is biased toward scleractinian corals, while much less is known on tropical symbiotic soft corals. Here, we evaluated the cellular stress response and the photophysiological performance of the soft coral Sarcophyton cf. glaucum, popularly termed as leather coral, under different global change scenarios. Corals were exposed to different light intensities (high light, low light, ∼662 and 253 µmol photons m-2 s-1) for 30 days (time-point 1) and a subsequent MHW simulation was carried out for 10 days (control 26 vs 32 °C) (time-point 2). Subsequently, corals were returned to control temperature and allowed to recover for 30 days (time-point 3). Photophysiological performance (maximum quantum yield of photosystem II (Fv/Fm), a measure of photosynthetic activity; dark-level fluorescence (F0), as a proxy of chlorophyll a content (Chl a); and zooxanthellae density) and stress biomarkers (total protein, antioxidants, lipid peroxidation, ubiquitin, and heat shock protein 70) were assessed in corals at these three time-points. Corals were especially sensitive to the combination of heat and high light stress, experiencing a decrease in their photosynthetic efficiency under these conditions. Heat stress resulted in bleaching via zooxanthellae loss while high light stress led to pigment (Chl a) loss. This species' antioxidant defenses, and protein degradation were particularly enhanced under heat stress. A recovery was clear for molecular parameters after 30 days of recovery, whereby photophysiological performance required more time to return to basal levels. We conclude that soft corals distributed along intertidal areas, where the light intensity is high, could be especially vulnerable to marine heatwave events, highlighting the need to direct conservation efforts toward these organisms.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Clorofila A , Ecossistema , Recifes de Corais , Luz , Simbiose/fisiologia , Antioxidantes
13.
Sci Total Environ ; 856(Pt 1): 158732, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122726

RESUMO

Species from shallow marine environments are particularly vulnerable to extreme weather events (heatwaves and extreme rainfall) that can promote abrupt environmental shifts, namely in temperature and salinity (respectively). To assess how these shifts impact species' cellular stress responses (CSR), ditch shrimps Palaemon varians were exposed to a chronic (28 days) thermohaline stress experiment. Three levels of temperature (20, 23 and 26 °C) and two levels of salinity (20 and 40) were tested in a full factorial experiment, and shrimps sampled at the 7th, 14th, 21st and 28th day of exposure. Survival, wet weight (as proxy for growth), and cellular stress biomarkers associated with oxidative stress (LPO - Lipid Peroxidation, GST - Glutathione-S-Transferase, SOD - Superoxide Dismutase, TAC - Total Antioxidant Capacity and CAT - Catalase) and protein denaturation (UBI - Ubiquitin and HSP-70 - Heat Shock Protein 70 kDa) were analysed in shrimps' muscle at each sampling day. Temperature and time of exposure significantly affected biomarker levels, with shrimps exposed to 20 and 26 °C revealing more pronounced differences. No interactions were detected between temperature and salinity, suggesting that these factors display additive effects on shrimps' CSR. Antioxidant agents (CAT and TAC) increased under elevated temperature, while protein denaturation markers (UBI and HSP-70) were mostly affected by time of exposure, decreasing at 28 days. Total protein reserves increased throughout time and no effects on wet weight were observed. A negative correlation between wet weight and HSP-70 was detected, suggesting that HSP-70 levels are dependent on organism size. Peak survival (~73 %) was found under 20 °C and salinity 40 and lower survival (~30-40 %) was associated with higher temperatures (23 and 26 °C) and lower salinity (20). We conclude that P. varians displays some level of acclimation capacity but differences in survival may indicate effects on osmoregulation processes and the need for longer timeframes to fully acclimate to heat and hyposaline stress.


Assuntos
Decápodes , Clima Extremo , Palaemonidae , Animais , Palaemonidae/metabolismo , Plásticos , Antioxidantes , Aclimatação , Decápodes/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Biomarcadores/metabolismo
14.
Front Bioeng Biotechnol ; 10: 1041102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568299

RESUMO

Over the past few decades, natural-origin polysaccharides have received increasing attention across different fields of application, including biomedicine and biotechnology, because of their specific physicochemical and biological properties that have afforded the fabrication of a plethora of multifunctional devices for healthcare applications. More recently, marine raw materials from fisheries and aquaculture have emerged as a highly sustainable approach to convert marine biomass into added-value polysaccharides for human benefit. Nowadays, significant efforts have been made to combine such circular bio-based approach with cost-effective and environmentally-friendly technologies that enable the isolation of marine-origin polysaccharides up to the final construction of a biomedical device, thus developing an entirely sustainable pipeline. In this regard, the present review intends to provide an up-to-date outlook on the current green extraction methodologies of marine-origin polysaccharides and their molecular engineering toolbox for designing a multitude of biomaterial platforms for healthcare. Furthermore, we discuss how to foster circular bio-based approaches to pursue the further development of added-value biomedical devices, while preserving the marine ecosystem.

15.
Nat Ecol Evol ; 6(9): 1262-1270, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798839

RESUMO

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.


Assuntos
Biodiversidade , Ecossistema , Animais , Mudança Climática , Humanos
16.
Mar Drugs ; 20(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35736192

RESUMO

From 1990-2019, a total of 15,442 New Marine Natural Products from Invertebrates (NMNPIs) were reported. The 2010s saw the most prolific decade of biodiscovery, with 5630 NMNPIs recorded. The phyla that contributed most biomolecules were the Porifera (sponges) (47.2%, 2659 NMNPIs) and the Cnidaria (35.3%, 1989 NMNPIs). The prevalence of these two phyla as the main sources of NMNPIs became more pronounced in the 2010s. The tropical areas of the Pacific Ocean yielded more NMNPIs, most likely due to the remarkable biodiversity of coral reefs. The Indo-Burma biodiversity hotspot (BH) was the most relevant area for the biodiscovery of NMNPIs in the 2010s, accounting for nearly one-third (1819 NMNPIs) of the total and surpassing the top BH from the 1990s and the 2000s (the Sea of Japan and the Caribbean Islands, respectively). The Chinese exclusive economic zone (EEZ) alone contributed nearly one-quarter (24.7%) of all NMNPIs recorded during the 2010s, displacing Japan's leading role from the 1990s and the 2000s. With the biodiscovery of these biomolecules steadily decreasing since 2012, it is uncertain whether this decline has been caused by lower bioprospecting efforts or the potential exhaustion of chemodiversity from traditional marine invertebrate sources.


Assuntos
Produtos Biológicos , Animais , Biodiversidade , Recifes de Corais , Invertebrados , Oceano Pacífico
17.
Waste Manag ; 141: 183-193, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134619

RESUMO

In modern aquaculture systems, feed is the main source of the waste being produced, including expired aquafeeds. There is a link between the expiration date of aquafeeds enriched with fish oil for marine fish and the observation of several physical and microbiological changes. Among these, lipid oxidation is worth highlighting, as this process is responsible for the loss of palatability of aquafeeds, which can lead to feeding rejection by the species being farmed. In this study, we used an expired fish aquafeed, which otherwise would be discarded as waste, as a substrate to feed Black Soldier Fly (BSF) larvae. Different replacement levels of expired aquafeed were used which unravelled the amount of n-3 fatty acids added to larval tissues of BSF larvae after 2, 7, and 10 days of feeding. Our results also showed that shorter trials and higher diet replacement levels induced a deleterious effect on final larval weight. Furthermore, amino acid and fatty acid larval contents were shaped by the supplied diet, with results supporting the inclusion of BSF meal in aquafeeds, due to the levels of lysine (5.6-8.9%), methionine (1.9-3.2%), and omega-3 fatty acids (14.5%) recorded. These results demonstrate that the re-introduction of an expired resource aiming to diversify the source of aquafeeds raw materials can be safely achieved through BSF biotransformation. Overall, BSF larvae can successfully recover important nutrients for aquafeeds targeting marine species and foster the production of value-added insects under a circular bioeconomy framework.

18.
Biomolecules ; 12(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053282

RESUMO

Marine microalgae are a multitude of taxonomically diverse unicellular organisms, ranging from diatoms to dinoflagellates and several other well-known groups, that may dwell in the water column, occur in marine sediments, or even associate symbiotically with marine animals [...].


Assuntos
Diatomáceas , Dinoflagellida , Microalgas , Animais , Lipídeos , Valor Nutritivo
19.
J Therm Biol ; 103: 103151, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35027201

RESUMO

As global temperatures continue to rise due to global change, marine heatwaves are also becoming more frequent and intense, impacting marine biodiversity patterns worldwide. Organisms inhabiting shallow water environments, such as the commercially relevant ditch shrimp Palaemon varians, are expected to be the most affected by rising temperatures. Thus, addressing species' thermal ecology and climate extinction-risk is crucial to foster climate-smart conservation strategies for shallow water ecosystems. Here, we estimated sex-specific upper thermal tolerance limits for P. varians via the Critical Thermal Maximum method (CTmax), using loss of equilibrium as endpoint. We further calculated thermal safety margins for males and females and tested for correlations between upper thermal limits and shrimps' body size. To determine sex-biased variation in P. varians' traits (CTmax, weight and length), we compared trait variation between females and males through the coefficient of variation ratio (lnCVR). Females displayed an average CTmax value 1.8% lower than males (CTmaxfemales = 37.0 °C vs CTmaxmales = 37.7 °C). This finding may be related to the larger body size exhibited by females (156% heavier and 39% larger than males), as both length and weight had a significant effect on CTmax. The high energetic investment of females in offspring may also contribute to the differences recorded in thermal tolerance. Overall, organisms with a smaller body-size displayed a greater tolerance to elevated temperature, thus suggesting that smaller individuals may be positively selected in warmer environments. This selection may result in a reduction of size-at-maturity and shifts in sex ratio, given the sexual dimorphism in body size of shrimps. The thermal safety margin of P. varians was narrow (∼2.2 °C for males and ∼1.5 °C for females), revealing the vulnerability of this species to ocean warming and heatwaves.


Assuntos
Biodiversidade , Evolução Biológica , Tamanho Corporal , Palaemonidae/fisiologia , Termotolerância , Aclimatação , Animais , Mudança Climática , Feminino , Masculino , Oceanos e Mares , Temperatura
20.
Mol Ecol Resour ; 22(1): 86-101, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34153167

RESUMO

Accurate species identification often relies on public repositories to compare the barcode sequences of the investigated individual(s) with taxonomically assigned sequences. However, the accuracy of identifications in public repositories is often questionable, and the names originally given are rarely updated. For instance, species of the Sea Lettuce (Ulva spp.; Ulvophyceae, Ulvales, Ulvaceae) are frequently misidentified in public repositories, including herbaria and gene banks, making species identification based on traditional barcoding unreliable. We DNA barcoded 295 individual distromatic foliose strains of Ulva from the North-East Atlantic for three loci (rbcL, tufA, ITS1). Seven distinct species were found, and we compared our results with all worldwide Ulva spp. sequences present in the NCBI database for the three barcodes rbcL, tufA and the ITS1. Our results demonstrate a large degree of species misidentification, where we estimate that 24%-32% of the entries pertaining to foliose species are misannotated and provide an exhaustive list of NCBI sequences reannotations. An analysis of the global distribution of registered samples from foliose species also indicates possible geographical isolation for some species, and the absence of U. lactuca from Northern Europe. We extended our analytical framework to three other genera, Fucus, Porphyra and Pyropia and also identified erroneously labelled accessions and possibly new synonymies, albeit less than for Ulva spp. Altogether, exhaustive taxonomic clarification by aggregation of a library of barcode sequences highlights misannotations and delivers an improved representation of species diversity and distribution.


Assuntos
Geografia , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...