Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 6: e1724, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25880091

RESUMO

This study aims at evaluating the combination of the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 (TRAIL-R2)-specific antibody Drozitumab and the Smac mimetic BV6 in preclinical glioblastoma models. To this end, the effect of BV6 and/or Drozitumab on apoptosis induction and signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures and glioblastoma stem-like cells. Here, we report that BV6 and Drozitumab synergistically induce apoptosis and reduce colony formation in several glioblastoma cell lines (combination index<0.1). Also, BV6 profoundly enhances Drozitumab-induced apoptosis in primary glioblastoma cultures and glioblastoma stem-like cells. Importantly, BV6 cooperates with Drozitumab to suppress tumor growth in two glioblastoma in vivo models including an orthotopic, intracranial mouse model, underlining the clinical relevance of these findings. Mechanistic studies reveal that BV6 and Drozitumab act in concert to trigger the formation of a cytosolic receptor-interacting protein (RIP) 1/Fas-associated via death domain (FADD)/caspase-8-containing complex and subsequent activation of caspase-8 and -3. BV6- and Drozitumab-induced apoptosis is blocked by the caspase inhibitor zVAD.fmk, pointing to caspase-dependent apoptosis. RNA interference-mediated silencing of RIP1 almost completely abolishes the BV6-conferred sensitization to Drozitumab-induced apoptosis, indicating that the synergism critically depends on RIP1 expression. In contrast, both necrostatin-1, a RIP1 kinase inhibitor, and Enbrel, a TNFα-blocking antibody, do not interfere with BV6/Drozitumab-induced apoptosis, demonstrating that apoptosis occurs independently of RIP1 kinase activity or an autocrine TNFα loop. In conclusion, the rational combination of BV6 and Drozitumab presents a promising approach to trigger apoptosis in glioblastoma, which warrants further investigation.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Anticorpos Monoclonais Humanizados , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Neuroscience ; 154(4): 1195-204, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18538938

RESUMO

The orbitofrontal cortex (OFC) plays a critical role in learning a reversal of stimulus-reward contingencies. Dopamine (DA) neurons probably support reversal learning by emitting prediction error signals that indicate the discrepancy between the actually received reward and its prediction. However, the role of DA receptor-mediated signaling in the OFC to adapt behavior to changing stimulus-reward contingencies is largely unknown. Here we examined the effects of a selective D1 or D2 receptor blockade in the OFC on learning a reversal of previously acquired stimulus-reward magnitude contingencies. Rats were trained on a reaction time (RT) task demanding conditioned lever release with discriminative visual stimuli signaling in advance the upcoming reward magnitude (one or five food pellets). After acquisition, RTs were guided by stimulus-associated reward magnitudes, i.e. RTs of responses were significantly shorter for expected high versus low reward. Thereafter, stimulus-reward magnitude contingencies were reversed and learning was tested under reversal conditions for three blocks after pre-trial infusions of the selective D1 or D2 receptor antagonists R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepinhydrochloride (SCH23390), eticlopride, or vehicle. For comparisons, we included intra-OFC infusions of the selective N-methyl-D-aspartate receptor antagonist AP5. Results revealed that in animals subjected to intra-OFC infusions of SCH23390 or eticlopride learning a reversal of previously acquired stimulus reward-magnitude contingencies was impaired. Thus, in a visual discrimination task as used here, D1 and D2 receptor-mediated signaling in the OFC seems to be necessary to update the reward-predictive significance of stimuli.


Assuntos
Comportamento Animal/fisiologia , Lobo Frontal/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Lobo Frontal/efeitos dos fármacos , Ratos , Tempo de Reação , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...