Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(3): 1057-1074, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153327

RESUMO

Incomplete reperfusion of the microvasculature ('no-reflow') after ischaemic stroke damages salvageable brain tissue. Previous ex vivo studies suggest pericytes are vulnerable to ischaemia and may exacerbate no-reflow, but the viability of pericytes and their association with no-reflow remains under-explored in vivo. Using longitudinal in vivo two-photon single-cell imaging over 7 days, we showed that 87% of pericytes constrict during cerebral ischaemia and remain constricted post reperfusion, and 50% of the pericyte population are acutely damaged. Moreover, we revealed ischaemic pericytes to be fundamentally implicated in capillary no-reflow by limiting and arresting blood flow within the first 24 h post stroke. Despite sustaining acute membrane damage, we observed that over half of all cortical pericytes survived ischaemia and responded to vasoactive stimuli, upregulated unique transcriptomic profiles and replicated. Finally, we demonstrated the delayed recovery of capillary diameter by ischaemic pericytes after reperfusion predicted vessel reconstriction in the subacute phase of stroke. Cumulatively, these findings demonstrate that surviving cortical pericytes remain both viable and promising therapeutic targets to counteract no-reflow after ischaemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Pericitos/fisiologia , Infarto Cerebral
2.
J Physiol ; 601(1): 195-209, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412169

RESUMO

Presynaptic modulation is a fundamental process regulating synaptic transmission. Striatal indirect pathway projections originate from A2A-expressing spiny projection neurons (iSPNs), targeting the globus pallidus external segment (GPe) and control the firing of the tonically active GPe neurons via GABA release. It is unclear if and how the presynaptic G-protein-coupled receptors (GPCRs), GABAB and CB1 receptors modulate iSPN-GPe projections. Here we used an optogenetic platform to study presynaptic Ca2+ and GABAergic transmission at iSPN projections, using a genetic strategy to express the calcium sensor GCaMP6f or the excitatory channelrhodopsin (hChR2) on iSPNs. We found that P/Q-type calcium channels are the primary voltage-gated Ca2+ channel (VGCC) subtype controlling presynaptic calcium and GABA release at iSPN-GPe projections. N-type and L-type VGCCs also contribute to GABA release at iSPN-GPe synapses. GABAB receptor activation resulted in a reversible inhibition of presynaptic Ca2+ transients (PreCaTs) and an inhibition of GABAergic transmission at iSPN-GPe synapses. CB1 receptor activation did not inhibit PreCaTs but inhibited GABAergic transmission at iSPN-GPe projections. CB1 effects on GABAergic transmission persisted in experiments where NaV and KV 1 were blocked, indicating a VGCC- and KV 1-independent presynaptic mechanism of action of CB1 receptors. Taken together, presynaptic modulation of iSPN-GPe projections by CB1 and GABAB receptors is mediated by distinct mechanisms. KEY POINTS: P/Q-type are the predominant voltage-gated Ca2+ channels controlling presynaptic Ca2+ and GABA release on the striatal indirect pathway projections. GABAB receptors modulate iSPN-GPe projections via a VGCC-dependent mechanism. CB1 receptors modulate iSPN-GPe projections via a VGCC-independent mechanism.


Assuntos
Globo Pálido , Ácido gama-Aminobutírico , Camundongos , Animais , Globo Pálido/metabolismo , Ácido gama-Aminobutírico/metabolismo , Receptores de GABA-B/metabolismo , Cálcio/metabolismo , Corpo Estriado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...