Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 57: 171-80, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26354252

RESUMO

Dip Pen Nanolithography technique has been employed for patterning L-Glutathione tripeptide (l-y-glutamyl-l-cysteinyl-glycine) nanostructures at specific locations on metallic Au(111) substrate. The formed supramolecular architectures were designed through straight lines and dots serving as precursors for building blocks assemblies in nano-bio-electronics applications or as template structures for functionalized particles in the form of host-guest networks. Tween 20 polyoxyethylene surfactant concentrations ranging from 0.005 to 0.1% (v/v) into initial l-Glutathione tripeptide (2 mg mL(-1)) ink solutions were sequentially tested for the improvement of the ink delivery process and to assure an optimum uniformity and homogeneity over the patterned space. A strong relationship was found between the coated atomic force microscope (AFM) cantilever within the highly effective Tween 20 activator adjuvant and the molecular diffusion along concentration gradients. An increase in the driving force for ink transport from the AFM tip has been demonstrated within the highest 0.1% (v/v) TW 20 surfactant concentration, favoring the patterning of GSH molecules routinely with sub-100 nm resolution. Self-assembled monolayers of GSH were also fabricated and characterized in the light of X-ray photoemission spectroscopy (XPS) and ellipsometric optical measurements. Adsorption from water of l-Glutathione to the gold substrate is proven to be made by the thiol group of cysteine. Theoretical DFT approaches were applied for quantum chemical studies dedicated to electronic processes underneath molecular GSH/Au(111) systems.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Glutationa/química , Ouro/química , Nanopartículas/química , Fotografação/métodos , Impressão Tridimensional , Adsorção , Ouro/análise , Teste de Materiais
2.
J Chem Phys ; 131(1): 014101, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19586090

RESUMO

We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M(1)); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M(2)) plus two to five (BH(4))(-) groups, i.e., M(1)M(2)(BH(4))(2-5), using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M(1)(Al/Mn/Fe)(BH(4))(4), (Li/Na)Zn(BH(4))(3), and (Na/K)(Ni/Co)(BH(4))(3) alloys are found to be the most promising, followed by selected M(1)(Nb/Rh)(BH(4))(4) alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...