Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 25(11): 2314-2323, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27146843

RESUMO

Loss of function mutations in human Oligophrenin1 (OPHN1) gene are responsible for syndromic intellectual disability (ID) associated with cerebellar hypoplasia and cerebral ventricles enlargement. Functional studies in rodent models suggest that OPHN1 linked ID is a consequence of abnormal synaptic transmission and shares common pathophysiological mechanisms with other cognitive disorders. Variants of this gene have been also identified in autism spectrum disorder and schizophrenia. The advanced understanding of the mechanisms underlying OPHN1-related ID, allowed us to develop a therapeutic approach targeting the Ras homolog gene family, member A (RHOA) signalling pathway and repurpose Fasudil- a well-tolerated Rho Kinase (ROCK) and Protein Kinase A (PKA) inhibitor- as a treatment of ID. We have previously shown ex-vivo its beneficial effect on synaptic transmission and plasticity in a mouse model of the OPHN1 loss of function. Here, we report that chronic treatment in adult mouse with Fasudil, is able to counteract vertical and horizontal hyperactivities, restores recognition memory and limits the brain ventricular dilatation observed in Ophn1-/y However, deficits in working and spatial memories are partially or not rescued by the treatment. These results highlight the potential of Fasudil treatment in synaptopathies and also the need for multiple therapeutic approaches especially in adult where brain plasticity is reduced.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Encéfalo/fisiopatologia , Proteínas do Citoesqueleto/genética , Proteínas Ativadoras de GTPase/genética , Deficiência Intelectual/tratamento farmacológico , Proteínas Nucleares/genética , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/administração & dosagem , Adulto , Animais , Transtorno do Espectro Autista , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Camundongos , Transmissão Sináptica
2.
Biol Psychiatry ; 80(4): 302-311, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26452614

RESUMO

BACKGROUND: CDKL5 (cyclin-dependent kinase-like 5) is mutated in many severe neurodevelopmental disorders, including atypical Rett syndrome. CDKL5 was shown to interact with synaptic proteins, but an in vivo analysis of the role of CDKL5 in dendritic spine dynamics and synaptic molecular organization is still lacking. METHODS: In vivo two-photon microscopy of the somatosensory cortex of Cdkl5(-/y) mice was applied to monitor structural dynamics of dendritic spines. Synaptic function and plasticity were measured using electrophysiological recordings of excitatory postsynaptic currents and long-term potentiation in brain slices and assessing the expression of synaptic postsynaptic density protein 95 (PSD-95). Finally, we studied the impact of insulin-like growth factor 1 (IGF-1) treatment on CDKL5 null mice to restore the synaptic deficits. RESULTS: Adult mutant mice showed a significant reduction in spine density and PSD-95-positive synaptic puncta, a reduction of persistent spines, and impaired long-term potentiation. In juvenile mutants, short-term spine elimination, but not formation, was dramatically increased. Exogenous administration of IGF-1 rescued defective rpS6 phosphorylation, spine density, and PSD-95 expression. Endogenous cortical IGF-1 levels were unaffected by CDKL5 deletion. CONCLUSIONS: These data demonstrate that dendritic spine stabilization is strongly regulated by CDKL5. Moreover, our data suggest that IGF-1 treatment could be a promising candidate for clinical trials in CDKL5 patients.


Assuntos
Espinhas Dendríticas/patologia , Fator de Crescimento Insulin-Like I/uso terapêutico , Síndrome de Rett , Espasmos Infantis , Fatores Etários , Animais , Animais Recém-Nascidos , Espinhas Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Síndromes Epilépticas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Guanilato Quinases/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Células Piramidais/patologia , Células Piramidais/ultraestrutura , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/patologia , Córtex Somatossensorial/patologia , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética , Espasmos Infantis/patologia , Sinapses/efeitos dos fármacos , Sinapses/patologia
3.
Neurodegener Dis ; 15(1): 13-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25500798

RESUMO

BACKGROUND: Dopaminergic degeneration is a major finding in brains of patients with Parkinson's disease (PD), together with Lewy bodies, intraneuronal inclusions mainly composed of the fibrillogenic protein α-synuclein (α-syn). The familial-PD-related protein DJ-1 was reported to reduce dopaminergic degeneration triggered by α-syn or by the dopaminergic-selective neurotoxin 6-hydroxydopamine (6-OHDA). OBJECTIVE: The aim was to further investigate the role of DJ-1 in dopaminergic degeneration and to see whether a cell-permeable recombinant form of DJ-1 (TAT-DJ-1) could restore dopamine depletion in vivo, thus representing an innovative therapeutic approach. METHODS: We developed in vitro (PC12/TetOn cells and mouse primary mesencephalic neurons) and in vivo models [including DJ-1 knockout (-/-) mice] to investigate DJ-1 in dopaminergic degeneration. RESULTS: We found that in PC12/TetOn cells overexpressing α-syn with the familial-PD linked mutation A30P, DJ-1 silencing increased α-syn (A30P) toxicity. Primary mesencephalic neurons from DJ-1 (-/-) mice were more vulnerable to a cell-permeable form of α-syn (TAT-α-syn) and to 6-OHDA. Intrastriatally administered TAT-DJ-1 reduced 6-OHDA toxicity in vivo in C57BL/6 mice. Finally, when we injected TAT-α-syn (A30P) in the striatum of DJ-1 (-/-) animals, dopamine was depleted more than in the control strain. CONCLUSION: DJ-1 appears to have a protective role against dopaminergic degeneration triggered by α-syn or 6-OHDA, reinforcing the possible therapeutic importance of this protein in PD.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Degeneração Neural/prevenção & controle , Proteínas Oncogênicas/farmacologia , Oxidopamina/farmacologia , Peroxirredoxinas/farmacologia , alfa-Sinucleína/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Oxidopamina/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Proteína Desglicase DJ-1 , Regulação para Cima , alfa-Sinucleína/metabolismo
4.
Eur J Hum Genet ; 23(2): 195-201, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24916645

RESUMO

Rett syndrome is a monogenic disease due to de novo mutations in either MECP2 or CDKL5 genes. In spite of their involvement in the same disease, a functional interaction between the two genes has not been proven. MeCP2 is a transcriptional regulator; CDKL5 encodes for a kinase protein that might be involved in the regulation of gene expression. Therefore, we hypothesized that mutations affecting the two genes may lead to similar phenotypes by dysregulating the expression of common genes. To test this hypothesis we used induced pluripotent stem (iPS) cells derived from fibroblasts of one Rett patient with a MECP2 mutation (p.Arg306Cys) and two patients with mutations in CDKL5 (p.Gln347Ter and p.Thr288Ile). Expression profiling was performed in CDKL5-mutated cells and genes of interest were confirmed by real-time RT-PCR in both CDKL5- and MECP2-mutated cells. The only major change in gene expression common to MECP2- and CDKL5-mutated cells was for GRID1, encoding for glutamate D1 receptor (GluD1), a member of the δ-family of ionotropic glutamate receptors. GluD1 does not form AMPA or NMDA glutamate receptors. It acts like an adhesion molecule by linking the postsynaptic and presynaptic compartments, preferentially inducing the inhibitory presynaptic differentiation of cortical neurons. Our results demonstrate that GRID1 expression is downregulated in both MECP2- and CDKL5-mutated iPS cells and upregulated in neuronal precursors and mature neurons. These data provide novel insights into disease pathophysiology and identify possible new targets for therapeutic treatment of Rett syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Neurogênese , Proteínas Serina-Treonina Quinases/genética , Receptores de Glutamato/genética , Síndrome de Rett/genética , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Glutamato/metabolismo , Síndrome de Rett/metabolismo
5.
J Neurochem ; 131(1): 115-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24978323

RESUMO

Rett syndrome (RTT, MIM312750), a neurodevelopmental disorder predominantly occurring in females, is caused in the majority of cases by sporadic mutations in the gene encoding the transcriptional modulator methyl-CpG-binding protein 2 (MECP2). In mice, impaired MeCP2 function results in severe motor, cognitive, and emotional defects. The lack of Mecp2 in γ-aminobutyric acid-(GABA) releasing forebrain interneurons (INs) recapitulate many RTT features, however, the role of this gene in the development of the cortical inhibitory system is still unknown. Here, we found that MeCP2 expression varies among the three major classes of cortical INs and its nuclear localization differs between neuronal types. The density of calretinin(+) and parvalbumin(+) INs increases in Mecp2 knockout mice (Mecp2(-/y) ) already at early post-natal developmental stages. In contrast, the density of somatostatin(+) INs is not affected. We also found that the development of multipolar-calretinin(+) INs is selectively affected by the absence of Mecp2. Additionally, we show that in Mecp2 heterozygous female mice, a model closely mimicking human RTT condition, IN abnormalities are similar to those observed in Mecp2(-/y) mice. Together, our study indicates that loss of function of Mecp2 strongly interferes with the correct establishment of the neocortical inhibitory system producing effects that are specific to different IN subtypes.


Assuntos
Modelos Animais de Doenças , Interneurônios/patologia , Proteína 2 de Ligação a Metil-CpG/deficiência , Síndrome de Rett/patologia , Córtex Somatossensorial/patologia , Animais , Animais Recém-Nascidos , Feminino , Interneurônios/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Córtex Somatossensorial/crescimento & desenvolvimento , Córtex Somatossensorial/metabolismo
6.
PLoS One ; 9(5): e91613, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24838000

RESUMO

Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.


Assuntos
Modelos Animais de Doenças , Fenótipo , Prosencéfalo/patologia , Proteínas Serina-Treonina Quinases/genética , Síndrome de Rett/genética , Síndrome de Rett/patologia , Transdução de Sinais/fisiologia , Espasmos Infantis/genética , Espasmos Infantis/patologia , Análise de Variância , Animais , Western Blotting , Dendritos/patologia , Eletroencefalografia , Síndromes Epilépticas , Potenciais Evocados Visuais/fisiologia , Movimentos Oculares/fisiologia , Imunofluorescência , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
7.
J Neurosci ; 34(4): 1542-53, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453341

RESUMO

A major challenge in the neuroscience field is the identification of molecules and pathways that control synaptic plasticity and memory. Dendritic spines play a pivotal role in these processes, as the major sites of excitatory synapses in neuronal communication. Previous studies have shown that the scaffold protein p140Cap localizes into dendritic spines and that its knockdown negatively modulates spine shape in culture. However, so far, there is no information on its in vivo relevance. By using a knock-out mouse model, we here demonstrate that p140Cap is a key element for both learning and synaptic plasticity. Indeed, p140Cap(-/-) mice are impaired in object recognition test, as well as in LTP and in LTD measurements. The in vivo effects of p140Cap loss are presumably attenuated by noncell-autonomous events, since primary neurons obtained from p140Cap(-/-) mice show a strong reduction in number of mushroom spines and abnormal organization of synapse-associated F-actin. These phenotypes are most likely caused by a local reduction of the inhibitory control of RhoA and of cortactin toward the actin-depolymerizing factor cofilin. These events can be controlled by p140Cap through its capability to directly inhibit the activation of Src kinase and by its binding to the scaffold protein Citron-N. Altogether, our results provide new insight into how protein associated with dynamic microtubules may regulate spine actin organization through interaction with postsynaptic density components.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinases da Família src/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Imunofluorescência , Hipocampo/metabolismo , Aprendizagem/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Ratos , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia
8.
Neuropsychopharmacology ; 37(12): 2580-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22763617

RESUMO

Trace amines (TAs) such as ß-phenylethylamine, p-tyramine, or tryptamine are biogenic amines found in the brain at low concentrations that have been implicated in various neuropsychiatric disorders like schizophrenia, depression, or attention deficit hyperactivity disorder. TAs are ligands for the recently identified trace amine-associated receptor 1 (TAAR1), an important modulator of monoamine neurotransmission. Here, we sought to investigate the consequences of TAAR1 hypersignaling by generating a transgenic mouse line overexpressing Taar1 specifically in neurons. Taar1 transgenic mice did not show overt behavioral abnormalities under baseline conditions, despite augmented extracellular levels of dopamine and noradrenaline in the accumbens nucleus (Acb) and of serotonin in the medial prefrontal cortex. In vitro, this was correlated with an elevated spontaneous firing rate of monoaminergic neurons in the ventral tegmental area, dorsal raphe nucleus, and locus coeruleus as the result of ectopic TAAR1 expression. Furthermore, Taar1 transgenic mice were hyposensitive to the psychostimulant effects of amphetamine, as it produced only a weak locomotor activation and failed to alter catecholamine release in the Acb. Attenuating TAAR1 activity with the selective partial agonist RO5073012 restored the stimulating effects of amphetamine on locomotion. Overall, these data show that Taar1 brain overexpression causes hyposensitivity to amphetamine and alterations of monoaminergic neurotransmission. These observations confirm the modulatory role of TAAR1 on monoamine activity and suggest that in vivo the receptor is either constitutively active and/or tonically activated by ambient levels of endogenous agonist(s).


Assuntos
Anfetamina/farmacologia , Monoaminas Biogênicas/fisiologia , Química Encefálica/fisiologia , Estimulantes do Sistema Nervoso Central/farmacologia , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/fisiologia , Transmissão Sináptica/fisiologia , Compostos de Anilina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Imidazóis/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Técnicas de Patch-Clamp , Fenótipo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Ácido gama-Aminobutírico/fisiologia
9.
Neurobiol Dis ; 43(2): 346-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21530659

RESUMO

Impairment of mitochondrial function might contribute to oxidative stress associated with neurodegeneration in amyotrophic lateral sclerosis (ALS). Glutamate levels in tissues of ALS patients are sometimes altered. In neurons, mitochondrial metabolism of exogenous glutamine is mainly responsible for the net synthesis of glutamate, which is a neurotransmitter, but it is also necessary for the synthesis of glutathione, the main endogenous antioxidant. We investigated glutathione synthesis and glutamine/glutamate metabolism in a motor neuronal model of familial ALS. In standard culture conditions (with glutamine) or restricting glutamine or cystine, the level of glutathione was always lower in the cell line expressing the mutant (G93A) human Cu, Zn superoxide dismutase (G93ASOD1) than in the line expressing wild-type SOD1. With glutamine the difference in glutathione was associated with a lower glutamate and impairment of the glutamine/glutamate metabolism as evidenced by lower glutaminase and cytosolic malate dehydrogenase activity. d-ß-hydroxybutyrate, as an alternative to glutamine as energy substrate in addition to glucose, reversed the decreases of cytosolic malate dehydrogenase activity and glutamate and glutathione. However, in the G93ASOD1 cell line, in all culture conditions the expression of pyruvate dehydrogenase kinase l protein, which down-regulates pyruvate dehydrogenase activity, was induced, together with an increase in lactate release in the medium. These findings suggest that the glutathione decrease associated with mutant SOD1 expression is due to mitochondrial dysfunction caused by the reduction of the flow of glucose-derived pyruvate through the TCA cycle; it implies altered glutamate metabolism and depends on the different mitochondrial energy substrates.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Comunicação Celular/fisiologia , Metabolismo Energético/fisiologia , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Modelos Neurológicos , Neurônios Motores/patologia
10.
Hum Mol Genet ; 20(6): 1182-96, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21212100

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder with no efficient treatment that is caused in the majority of cases by mutations in the gene methyl-CpG binding-protein 2 (MECP2). RTT becomes manifest after a period of apparently normal development and causes growth deceleration, severe psychomotor impairment and mental retardation. Effective animal models for RTT are available and show morphofunctional abnormalities of synaptic connectivity. However, the molecular consequences of MeCP2 disruption leading to neuronal and synaptic alterations are not known. Protein synthesis regulation via the mammalian target of the rapamycin (mTOR) pathway is crucial for synaptic organization, and its disruption is involved in a number of neurodevelopmental diseases. We investigated the phosphorylation of the ribosomal protein (rp) S6, whose activation is highly dependent from mTOR activity. Immunohistochemistry showed that rpS6 phosphorylation is severely affected in neurons across the cortical areas of Mecp2 mutants and that this alteration precedes the severe symptomatic phase of the disease. Moreover, we found a severe defect of the initiation of protein synthesis in the brain of presymptomatic Mecp2 mutant that was not restricted to a specific subset of transcripts. Finally, we provide evidence for a general dysfunction of the Akt/mTOR, but not extracellular-regulated kinase, signaling associated with the disease progression in mutant brains. Our results indicate that defects in the AKT/mTOR pathway are responsible for the altered translational control in Mecp2 mutant neurons and disclosed a novel putative biomarker of the pathological process. Importantly, this study provides a novel context of therapeutic interventions that can be designed to successfully restrain or ameliorate the development of RTT.


Assuntos
Regulação para Baixo , Proteína Oncogênica v-akt/metabolismo , Biossíntese de Proteínas , Síndrome de Rett/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Proteína Oncogênica v-akt/genética , Síndrome de Rett/genética , Serina-Treonina Quinases TOR/genética
11.
Psychopharmacology (Berl) ; 214(3): 625-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21049266

RESUMO

RATIONALE: Blockade of N-methyl-d-aspartic acid (NMDA) receptors in the rat medial prefrontal cortex (mPFC) impairs performance in the five-choice serial reaction time task (5-CSRTT) and increases glutamate (GLU) release. Recent research suggests that excessive GLU release may be critical for attention deficits. OBJECTIVES: We tested this hypothesis by investigating the effects of the atypical antipsychotics sertindole and clozapine on 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP)-induced performance deficits in the 5-CSRTT and on the CPP-induced GLU release in the mPFC. METHODS: The 5-CSRTT, a test of divided and sustained visual attention providing indices of attentional functioning (accuracy of visual discrimination), response control (anticipatory and perseverative responses) and intracortical microdialysis in conscious rats were used to investigate the effects of sertindole and clozapine. RESULTS: Low doses of sertindole (0.02-0.32 mg/kg) prevented CPP-induced accuracy deficits, anticipatory over-responding and the rise in GLU release. In contrast, doses ranging from 0.6 to 2.5 mg/kg had no effect or even enhanced the effect of CPP on anticipatory responding. Similarly, 2.5 mg/kg sertindole was unable to reverse CPP-induced rise in GLU release. Clozapine (2.5 mg/kg) prevented accuracy deficits and the increase in anticipatory responding and abolished the rise in GLU release induced by CPP. CONCLUSIONS: These findings show that the ameliorating effects of sertindole and clozapine on NMDA receptor dependent attention deficit is associated with suppression in GLU release in the mPFC. This supports the proposal that suppression in GLU release might be a target for the development of novel drugs aimed at counteracting some aspects of cognitive deficits of schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Atenção/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Imidazóis/farmacologia , Indóis/farmacologia , Piperazinas/farmacologia , Análise de Variância , Animais , Comportamento Animal , Comportamento de Escolha/efeitos dos fármacos , Clozapina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Microdiálise , Testes Neuropsicológicos , Estimulação Luminosa , Ratos , Ratos Sprague-Dawley , Tempo de Reação
12.
Psychopharmacology (Berl) ; 214(3): 639-52, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21052982

RESUMO

RATIONALE: Disruption in cognition is characteristic of psychiatric illnesses such as schizophrenia. Studies of drugs that improve cognition might provide a better insight into the mechanisms underlying cognitive deficits. OBJECTIVES: We compared the effects of the antipsychotic drugs aripiprazole, olanzapine, and haloperidol on performance deficit in a test of divided and sustained visual attention, the five-choice serial reaction time task (5-CSRTT), which provides information on attentional functioning (accuracy of visual discrimination), response control (measured by anticipatory and perseverative responses) and speed. METHODS: The cognitive deficit was induced by infusion of the competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) in the rat medial prefrontal cortex (mPFC). In vivo microdialysis was used to compare the effects of aripiprazole, olanzapine and haloperidol on CPP-induced glutamate (GLU) and serotonin (5-HT) release in the mPFC of conscious rats. RESULTS: Oral aripiprazole (1.0 and 3.0 mg/kg) and olanzapine (0.3 and 1.0 mg/kg), but not haloperidol (0.1 mg/kg), abolished the CPP-induced accuracy deficit and GLU release. Haloperidol and aripiprazole, but not olanzapine, reduced perseverative over-responding, while anticipatory responding was best controlled by olanzapine. However, these effects were not associated with changes in GLU release. No association was found between the effects of these antipsychotics on CPP-induced attentional performance deficits in the 5-CSRTT and 5-HT efflux. CONCLUSIONS: The data confirm that excessive GLU release in the mPFC is associated with attentional deficits. Thus, suppression of GLU release may be a target for the development of novel antipsychotic drugs with greater effect on some aspects of cognitive deficits.


Assuntos
Antipsicóticos/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/complicações , Análise de Variância , Animais , Antipsicóticos/uso terapêutico , Aripiprazol , Comportamento Animal , Benzodiazepinas/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/toxicidade , Haloperidol/farmacologia , Comportamento Impulsivo/tratamento farmacológico , Masculino , Microdiálise/métodos , Testes Neuropsicológicos , Olanzapina , Piperazinas/farmacologia , Piperazinas/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Quinolonas/farmacologia , Ratos , Tempo de Reação/efeitos dos fármacos , Esquizofrenia/induzido quimicamente , Serotonina/metabolismo , Fatores de Tempo
13.
Exp Neurol ; 225(1): 163-72, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20558160

RESUMO

In the present study, we investigated whether cultured astrocytes derived from adult neural precursor cells (NPCs) obtained from the subventricular zone (SVZ) of wobbler mice display metabolic traits of the wobbler astrocytes in situ and in primary culture. We also utilized NPC-derived astrocytes as a tool to investigate the involvement of astrocytes in the molecular mechanism of MND focusing on the possible alteration of glutamate reuptake since excitotoxicity glutamate-mediated may be a contributory pathway. NPC-derived wobbler astrocytes are characterized by high immunoreactivity for GFAP, significant decrease of glutamate uptake and reduced immunoreactivity for glutamate transporters GLT1 and GLAST. Spinal cord motor neurons obtained from healthy mouse embryos, when co-cultured with wobbler NPC-derived astrocytes, show reduced viability and morphologic alterations. These suffering motor neurons are caspase-7 positive, and treatment with anti-apoptotic drug V5 increases cell survival. Physical contact with wobbler astrocytes is not essential because purified motor neurons display reduced survival also when treated with the medium conditioned by wobbler NPC-derived astrocytes. Toxic levels of glutamate were revealed by HPLC assay in the extracellular medium of wobbler NPC-derived astrocytes, whereas the level of intracellular glutamate is reduced if compared with controls. Moreover, glutamate receptor antagonists are able to enhance motor neuron survival. Therefore, our results demonstrate that astrocytes derived from wobbler neural precursor cells display impaired glutamate homeostasis that may play a crucial role in motor neuron degeneration. Finally, the cultured astrocytes derived from NPCs of adult mice may offer a useful alternative in vitro model to study the molecular mechanisms involved in neurodegeneration.


Assuntos
Apoptose/fisiologia , Astrócitos/metabolismo , Astrócitos/patologia , Ácido Glutâmico/metabolismo , Neurônios Motores/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Animais , Comunicação Celular/fisiologia , Morte Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Camundongos , Camundongos Mutantes Neurológicos , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia
14.
J Neurochem ; 114(6): 1701-10, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20584103

RESUMO

We investigated the role of serotonin(2C) receptor-mediated feedback mechanisms in the response to citalopram in C57BL/6 and DBA/2 mice, which are respectively responders and non-responders to selective serotonin reuptake inhibitors in the forced swimming test. The microdialysis technique was used to assess changes in extracellular serotonin and GABA in the mouse dorsal raphé (DR). Citalopram (1.25-20 mg/kg) raised extracellular serotonin and GABA in the DR of both mouse strains. These effects were abolished by depleting brain serotonin with p-chlorophenylalanine (300 mg/kg × 3). Systemic and/or intra-DR infusion of the serotonin(2C) receptor antagonist 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline (1 mg/kg and 0.1 µM, respectively) enhanced citalopram's effect on extracellular serotonin in the DR and medial prefrontal cortex and abolished the rise of GABA in the DR of DBA/2 mice but had no effect in C57BL/6 mice. The serotonin(2C) receptor agonist Ro60-0175 (0.03-3.0 mg/kg) reduced extracellular serotonin and raised GABA in the DR of DBA/2 mice but had much less effect in C57BL/6 mice. These findings show that the sensitivity of serotonin(2C) receptors determines the efficacy of augmentation strategies aimed at enhancing the effect of serotonin reuptake inhibitors on extracellular serotonin through the suppression of serotonin(2C) receptor-mediated feedback control of serotonin neurons.


Assuntos
Neurônios/metabolismo , Receptor 5-HT2C de Serotonina/fisiologia , Serotonina/metabolismo , Aminopiridinas/farmacologia , Animais , Citalopram/farmacologia , Etilaminas/farmacologia , Espaço Extracelular/metabolismo , Retroalimentação Fisiológica , Fenclonina/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Microdiálise , Neurônios/efeitos dos fármacos , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina , Antagonistas do Receptor 5-HT2 de Serotonina , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Especificidade da Espécie , Ácido gama-Aminobutírico/metabolismo
15.
Int J Neuropsychopharmacol ; 12(6): 793-803, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19123962

RESUMO

We recently found that the response of DBA/2 mice to SSRIs in the forced swim test (FST) was impaired and they also had a smaller basal and citalopram-stimulated increase in brain extracellular serotonin (5-HT) than 'responder' strains. We employed intracerebral microdialysis, FST and selective antagonists of 5-HT1A and 5-HT2C receptors to investigate whether enhancing the increase in extracellular 5-HT reinstated the anti-immobility effect of citalopram in the FST. WAY 100635 (0.3 mg/kg s.c.) or SB 242084 (1 mg/kg s.c.), respectively a selective 5-HT1A and 5-HT2C receptor antagonist, raised the effect of citalopram (5 mg/kg) on extracellular 5-HT in the medial prefrontal cortex of DBA/2N mice (citalopram alone 5.2+/-0.3 fmol/20 microl, WAY 100635+citalopram 9.9+/-2.1 fmol/20 microl, SB 242084+ citalopram 7.6+/-1.0 fmol/20 microl) to the level reached in 'responder' mice given citalopram alone. The 5-HT receptor antagonists had no effect on the citalopram-induced increase in extracellular 5-HT in the dorsal hippocampus. The combination of citalopram with WAY 100635 or SB 242084 significantly reduced immobility time in DBA/2N mice that otherwise did not respond to either drug singly. Brain levels of citalopram in mice given citalopram alone or with 5-HT antagonists did not significantly differ. The results confirm that impaired 5-HT transmission accounts for the lack of effect of citalopram in the FST and suggest that enhancing the effect of SSRIs on extracellular 5-HT, through selective blockade of 5-HT1A and 5-HT2C receptors, could be a useful strategy to restore the response in treatment-resistant depression.


Assuntos
Córtex Cerebral/citologia , Líquido Extracelular/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina , Antagonistas do Receptor 5-HT2 de Serotonina , Serotonina/metabolismo , Aminopiridinas/farmacologia , Análise de Variância , Animais , Antidepressivos/farmacocinética , Córtex Cerebral/efeitos dos fármacos , Citalopram/farmacocinética , Interações Medicamentosas , Comportamento Exploratório/efeitos dos fármacos , Líquido Extracelular/efeitos dos fármacos , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Microdiálise/métodos , Piperazinas/farmacologia , Piridinas/farmacologia , Antagonistas da Serotonina/farmacologia
16.
J Neurochem ; 108(2): 521-32, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19046357

RESUMO

Blockade of NMDA receptors by intracortical infusion of 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT(2A) receptor antagonist, (R)-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT(1A) and 5-HT(2C) receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p-chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT(2C) receptor agonist, (S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 microg/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 microM), a 5-HT(2C) receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 microM) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT(2A) receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT(2C) receptors.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Fluorbenzenos/farmacologia , Ácido Glutâmico/metabolismo , Piperidinas/farmacologia , Receptor 5-HT2C de Serotonina/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Antagonistas da Serotonina/farmacologia , Serotonina/metabolismo , Animais , Comportamento Animal , Cromatografia Líquida de Alta Pressão/métodos , Etilaminas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Indóis/farmacologia , Masculino , Microdiálise/métodos , Piperazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiologia , Agonistas do Receptor 5-HT2 de Serotonina , Fatores de Tempo
17.
Eur J Pharmacol ; 594(1-3): 117-24, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18691569

RESUMO

We studied the antidepressant-like effect of paroxetine in strains of mice carrying different isoforms of tryptophan hydroxylase-2 (TPH-2), the enzyme responsible for the synthesis of brain serotonin (5-HT). The effect of paroxetine alone and in combination with pharmacological treatments enhancing or lowering 5-HT synthesis or melatonin was assessed in the forced swimming test in mice carrying allelic variants of TPH-2 (1473C in C57BL/6 and 1473G in DBA/2 and BALB/c). Changes in brain 5-hydroxytryptophan (5-HTP) accumulation and melatonin levels were measured by high-performance liquid chromatography. Paroxetine (2.5 and 5 mg/kg) reduced immobility time in C57BL/6J and C57BL/6N mice but had no such effect in DBA/2J, DBA/2N and BALB/c mice, even at 10 mg/kg. Enhancing 5-HT synthesis with tryptophan reinstated the antidepressant-like effect of paroxetine in DBA/2J, DBA/2N and BALB/c mice whereas inhibition of 5-HT synthesis prevented the effect of paroxetine in C57BL/6N mice. The response to paroxetine was not associated with changes in locomotor activity, brain melatonin or brain levels of the drug measured at the end of the behavioral test. These results support the importance of 5-HT synthesis in the response to SSRIs and suggest that melatonin does not contribute to the ability of tryptophan to rescue the antidepressant-like effect of paroxetine.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Depressão/psicologia , Atividade Motora/efeitos dos fármacos , Paroxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/fisiologia , Natação/psicologia , Animais , Química Encefálica/efeitos dos fármacos , Masculino , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Paroxetina/metabolismo , Serotonina/biossíntese , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Especificidade da Espécie , Triptofano/farmacologia
18.
J Neurosci ; 25(36): 8165-72, 2005 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16148224

RESUMO

Polymorphism of tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of brain serotonin (5-HT), is associated with less synthesis of brain 5-HT in DBA/2J and BALB/c than in C57BL/6J and 129/Sv mice. We selected the forced swimming test, a mouse model used to assess the antidepressant potential of drugs, and neurochemical techniques to study strain differences in the response to citalopram, a selective 5-HT reuptake inhibitor. Citalopram reduced immobility time in C57BL/6J and 129/Sv mice but had no such effect in DBA/2J and BALB/c mice. The drug reduced accumulation of 5-hydroxytryptophan (5-HTP), an indicator of 5-HT synthesis, in C57BL/6J and 129/Sv mice but much less in DBA/2J and BALB/c mice. Pretreatment with tryptophan raised 5-HTP accumulation and reinstated the antidepressant-like effect of citalopram in DBA/2J and BALB/c mice, whereas pharmacological inhibition of 5-HT synthesis prevented the effect of citalopram in C57BL/6J and 129/Sv mice. Because there were no strain differences in catecholamine synthesis, locomotor activity, and brain levels of citalopram at the end of the behavioral test, the results suggest that the failure of citalopram to reduce immobility time in DBA/2J and BALB/c mice is attributable to genotype-dependent impairment of 5-HT synthesis. Interstrain comparisons could probably be a useful strategy for understanding the mechanisms underlying the response to selective serotonin reuptake inhibitors.


Assuntos
Citalopram/farmacologia , Depressão/enzimologia , Depressão/genética , Atividade Motora/fisiologia , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Animais , Antidepressivos de Segunda Geração/farmacologia , Primers do DNA , Modelos Animais de Doenças , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Atividade Motora/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético , Serotonina/metabolismo , Especificidade da Espécie , Natação
19.
J Neurochem ; 91(1): 189-99, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15379899

RESUMO

We recently found that intracortical injection of the selective and competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) impaired attentional performance in rats and blockade of 5-hydroxytryptamine (5-HT)2A receptors antagonized this effect. Here, we used the microdialysis technique in conscious rats to study the effect of CPP on extracellular glutamate (GLU) in the medial prefrontal cortex (mPFC) and the regulation of this effect by 5-HT2A receptors. Intraperitoneal injection of 20 mg/kg CPP increased extracellular GLU in the mPFC (201% of basal levels) but had no effect on 5-HT. Intracortical infusion of 100 microm CPP increased extracellular GLU (230% of basal values) and 5-HT (150% of basal values) in the mPFC, whereas 30 microm had no significant effect. The effect of 100 microm CPP on extracellular GLU was abolished by tetrodotoxin, suggesting that neuronal activity is required. Subcutaneous injection of 40 microg/kg M100,907 completely antagonized the effect of 100 microm cpp on extracellular GLU, whereas 10 microg/kg caused only partial attenuation. Likewise, intracortical infusion of 0.1 microm M100,907 completely reversed the increase of extracellular GLU induced by CPP. These findings show that blockade of NMDA receptors in the mPFC is sufficient to increase extracellular GLU locally. The increase of cortical extracellular GLU may contribute to CPP-induced cognitive deficits and blockade of 5-HT2A receptors may provide a molecular mechanism for reversing these deficits caused by dysfunctional glutamatergic transmission in the mPFC.


Assuntos
2-Amino-5-fosfonovalerato/análogos & derivados , Fluorbenzenos/farmacologia , Ácido Glutâmico/metabolismo , Piperidinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/farmacologia , 2-Amino-5-fosfonovalerato/farmacologia , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Espaço Extracelular/efeitos dos fármacos , Masculino , Microdiálise/métodos , Nicotina/farmacologia , Piperazinas/farmacologia , Cloreto de Potássio/farmacologia , Córtex Pré-Frontal/fisiologia , Ratos , Receptor 5-HT2A de Serotonina/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Serotonina/metabolismo , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...