Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7472, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553547

RESUMO

Treacle ribosome biogenesis factor 1 (TCOF1) is responsible for about 80% of mandibular dysostosis (MD) cases. We have formerly identified a correlation between TCOF1 and CNBP (CCHC-type zinc finger nucleic acid binding protein) expression in human mesenchymal cells. Given the established role of CNBP in gene regulation during rostral development, we explored the potential for CNBP to modulate TCOF1 transcription. Computational analysis for CNBP binding sites (CNBP-BSs) in the TCOF1 promoter revealed several putative binding sites, two of which (Hs791 and Hs2160) overlap with putative G-quadruplex (G4) sequences (PQSs). We validated the folding of these PQSs measuring circular dichroism and fluorescence of appropriate synthetic oligonucleotides. In vitro studies confirmed binding of purified CNBP to the target PQSs (both folded as G4 and unfolded) with Kd values in the nM range. ChIP assays conducted in HeLa cells chromatin detected the CNBP binding to TCOF1 promoter. Transient transfections of HEK293 cells revealed that Hs2160 cloned upstream SV40 promoter increased transcription of downstream firefly luciferase reporter gene. We also detected a CNBP-BS and PQS (Dr2393) in the zebrafish TCOF1 orthologue promoter (nolc1). Disrupting this G4 in zebrafish embryos by microinjecting DNA antisense oligonucleotides complementary to Dr2393 reduced the transcription of nolc1 and recapitulated the craniofacial anomalies characteristic of Treacher Collins Syndrome. Both cnbp overexpression and Morpholino-mediated knockdown in zebrafish induced nolc1 transcription. These results suggest that CNBP modulates the transcriptional expression of TCOF1 through a mechanism involving G-quadruplex folding/unfolding, and that this regulation is active in vertebrates as distantly related as bony fish and humans. These findings may have implications for understanding and treating MD.


Assuntos
Quadruplex G , Disostose Mandibulofacial , Animais , Humanos , DNA/metabolismo , Células HEK293 , Células HeLa , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Nucleic Acids Res ; 51(22): 12124-12139, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37930868

RESUMO

Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4s). G4s folded in proximal promoter regions (PPR) are associated either with positive or negative transcriptional regulation. Given that single nucleotide variants (SNVs) affecting G4 folding (G4-Vars) may alter gene transcription, and that SNVs are associated with the human diseases' onset, we undertook a novel comprehensive study of the G4-Vars genome-wide (G4-variome) to find disease-associated G4-Vars located into PPRs. We developed a bioinformatics strategy to find disease-related SNVs located into PPRs simultaneously overlapping with putative G4-forming sequences (PQSs). We studied five G4-Vars disturbing in vitro the folding and stability of the G4s located into PPRs, which had been formerly associated with sporadic Alzheimer's disease (GRIN2B), a severe familiar coagulopathy (F7), atopic dermatitis (CSF2), myocardial infarction (SIRT1) and deafness (LHFPL5). Results obtained in cultured cells for these five G4-Vars suggest that the changes in the G4s affect the transcription, potentially contributing to the development of the mentioned diseases. Collectively, data reinforce the general idea that G4-Vars may impact on the different susceptibilities to human genetic diseases' onset, and could be novel targets for diagnosis and drug design in precision medicine.


Assuntos
Quadruplex G , Humanos , Regiões Promotoras Genéticas , DNA/química , Regulação da Expressão Gênica , Variação Genética
3.
Nat Commun ; 14(1): 3277, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280202

RESUMO

NADP(H) is a central metabolic hub providing reducing equivalents to multiple biosynthetic, regulatory and antioxidative pathways in all living organisms. While biosensors are available to determine NADP+ or NADPH levels in vivo, no probe exists to estimate the NADP(H) redox status, a determinant of the cell energy availability. We describe herein the design and characterization of a genetically-encoded ratiometric biosensor, termed NERNST, able to interact with NADP(H) and estimate ENADP(H). NERNST consists of a redox-sensitive green fluorescent protein (roGFP2) fused to an NADPH-thioredoxin reductase C module which selectively monitors NADP(H) redox states via oxido-reduction of the roGFP2 moiety. NERNST is functional in bacterial, plant and animal cells, and organelles such as chloroplasts and mitochondria. Using NERNST, we monitor NADP(H) dynamics during bacterial growth, environmental stresses in plants, metabolic challenges to mammalian cells, and wounding in zebrafish. NERNST estimates the NADP(H) redox poise in living organisms, with various potential applications in biochemical, biotechnological and biomedical research.


Assuntos
Plantas , Peixe-Zebra , Animais , NADP/metabolismo , Peixe-Zebra/metabolismo , Oxirredução , Plantas/genética , Plantas/metabolismo , Cloroplastos/metabolismo , Mamíferos/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902262

RESUMO

RNA guanine quadruplexes (G4s) regulate RNA functions, metabolism, and processing. G4s formed within precursors of microRNAs (pre-miRNAs) may impair pre-miRNAs maturation by Dicer, thus repressing mature miRNA biogenesis. As miRNAs are essential for proper embryonic development, we studied the role of G4s on miRNA biogenesis in vivo during zebrafish embryogenesis. We performed a computational analysis on zebrafish pre-miRNAs to find putative G4 forming sequences (PQSs). The precursor of the miRNA 150 (pre-miR-150) was found to contain an evolutionarily conserved PQS formed by three G-tetrads and able to fold in vitro as G4. MiR-150 controls the expression of myb, which shows a well-defined knock-down phenotype in zebrafish developing embryos. We microinjected zebrafish embryos with in vitro transcribed pre-miR-150 synthesized using either GTP (G-pre-miR-150) or 7-Deaza-GTP, a GTP analogue unable to form G4s (7DG-pre-miR-150). Compared to embryos injected with G-pre-miR-150, embryos injected with 7DG-pre-miR-150 showed higher levels of miRNA 150 (miR-150) and lower levels of myb mRNA and stronger phenotypes associated with myb knock-down. The incubation of pre-miR-150 prior to the injection with the G4 stabilizing ligand pyridostatin (PDS) reverted gene expression variations and rescued the phenotypes related to myb knock-down. Overall, results suggest that the G4 formed in pre-miR-150 functions in vivo as a conserved regulatory structure competing with the stem-loop structure necessary for miRNA biogenesis.


Assuntos
Desenvolvimento Embrionário , Quadruplex G , MicroRNAs , Peixe-Zebra , Animais , Guanosina Trifosfato/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Embrião não Mamífero
5.
Biochim Biophys Acta Gen Subj ; 1865(11): 129996, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34474118

RESUMO

BACKGROUND: Cellular nucleic acid binding protein (CNBP) is a conserved single-stranded nucleic acid binding protein present in most eukaryotes, but not in plants. Expansions in the CNBP gene cause myotonic dystrophy type 2. Initially reported as a transcriptional regulator, CNBP was then also identified acting as a translational regulator. SCOPE OF REVIEW: The focus of this review was to link the CNBP structural features and newly reported biochemical activities with the recently described biological functions, in the context of its pathological significance. MAJOR CONCLUSIONS: Several post-translational modifications affect CNBP subcellular localization and activity. CNBP participates in the transcriptional and translational regulation of a wide range of genes by remodeling single-stranded nucleic acid secondary structures and/or by modulating the activity of trans-acting factors. CNBP is required for proper neural crest and heart development, and plays a role in cell proliferation control. Besides, CNBP has been linked with neurodegenerative, inflammatory, and congenital diseases, as well as with tumor processes. GENERAL SIGNIFICANCE: This review provides an insight into the growing functions of CNBP in cell biology. A unique and robust mechanistic or biochemical connection among these roles has yet not been elucidated. However, the ability of CNBP to dynamically integrate signaling pathways and to act as nucleic acid chaperone may explain most of the roles and functions identified so far.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Humanos , Ácidos Nucleicos/metabolismo , Proteínas de Ligação a RNA/genética
6.
Genes (Basel) ; 12(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209401

RESUMO

The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. A number of gene regulatory networks coordinating neural crest cell specification and differentiation have been extensively studied to date. Although several publications suggest a common role for microRNA-145 (miR-145) in molecular reprogramming for cell cycle regulation and/or cellular differentiation, little is known about its role during in vivo cranial neural crest development. By modifying miR-145 levels in zebrafish embryos, abnormal craniofacial development and aberrant pigmentation phenotypes were detected. By whole-mount in situ hybridization, changes in expression patterns of col2a1a and Sry-related HMG box (Sox) transcription factors sox9a and sox9b were observed in overexpressed miR-145 embryos. In agreement, zebrafish sox9b expression was downregulated by miR-145 overexpression. In silico and in vivo analysis of the sox9b 3'UTR revealed a conserved potential miR-145 binding site likely involved in its post-transcriptional regulation. Based on these findings, we speculate that miR-145 participates in the gene regulatory network governing zebrafish chondrocyte differentiation by controlling sox9b expression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , MicroRNAs/genética , Crista Neural/citologia , Organogênese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular , Anormalidades Craniofaciais/etiologia , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Crista Neural/metabolismo , Transtornos da Pigmentação/etiologia , Transtornos da Pigmentação/metabolismo , Transtornos da Pigmentação/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
Nucleic Acids Res ; 47(15): 7901-7913, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31219592

RESUMO

Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4). Experimental evidences suggest that G4-DNA surrounding transcription start sites act as cis-regulatory elements by either stimulating or inhibiting gene transcription. Therefore, proteins able to target and regulate specific G4 formation/unfolding are crucial for G4-mediated transcriptional control. Here we present data revealing that CNBP acts in vitro as a G4-unfolding protein over a tetramolecular G4 formed by the TG4T oligonucleotide, as well as over the G4 folded in the promoters of several oncogenes. CNBP depletion in cellulo led to a reduction in the transcription of endogenous KRAS, suggesting a regulatory role of CNBP in relieving the transcriptional abrogation due to G4 formation. CNBP activity was also assayed over the evolutionary conserved G4 enhancing the transcription of NOGGIN (NOG) developmental gene. CNBP unfolded in vitro NOG G4 and experiments performed in cellulo and in vivo in developing zebrafish showed a repressive role of CNBP on the transcription of this gene by G4 unwinding. Our results shed light on the mechanisms underlying CNBP way of action, as well as reinforce the notion about the existence and function of G4s in whole living organisms.


Assuntos
DNA/química , Quadruplex G , Proteínas de Ligação a RNA/genética , Transcrição Gênica , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/genética , DNA/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
8.
Biochem Pharmacol ; 163: 362-370, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30849304

RESUMO

Treacher Collins Syndrome (TCS) is a congenital disease characterized by defects in the craniofacial skeleton and absence of mental alterations. Recently we modelled TCS in zebrafish (Danio rerio) embryos through the microinjection of Morpholino® oligonucleotides blocking the translation of the ortholog of the main causative gene (TCOF1). We showed that Cnbp, a key cytoprotective protein involved in normal rostral head development, was detected in lower levels (without changes in its mRNA expression) in TCS-like embryos. As previous reports suggested that Cnbp is degraded through the proteasomal pathway, we tested whether proteasome inhibitors (MG132 and Bortezomib (Velcade®, Millennium laboratories)) were able to ameliorate cranial skeleton malformations in TCS. Here we show that treatment with both proteasome inhibitors produced a robust craniofacial cartilage phenotype recovery. This recovery seems to be consequence of a decreased degradation of Cnbp in TCS-like embryos. Critical TCS manifestations, such as neuroepithelial cell death and cell redox imbalance were attenuated. Thus, proteasome inhibitors may offer an opportunity for TCS molecular and phenotypic manifestation's prevention. Although further development of new safe inhibitors compatible with administration during pregnancy is required, our results encourage this therapeutic approach.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Disostose Mandibulofacial/metabolismo , Morfolinos/efeitos adversos , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Disostose Mandibulofacial/patologia , Fosfoproteínas/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
Biochim Biophys Acta Gene Regul Mech ; 1862(4): 472-485, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30840854

RESUMO

The multidomain RNase III endoribonuclease DICER is required for the generation of most functional microRNAs (miRNAs). Loss of Dicer affects developmental processes at different levels. Here, we characterized the zebrafish Dicer1 mutant, dicer1sa9205, which has a single point mutation induced by N-ethyl-N-nitrosourea mutagenesis. Heterozygous dicer1sa9205 developed normally, being phenotypically indistinguishable from wild-type siblings. Homozygous dicer1sa9205 mutants display smaller eyes, abnormal craniofacial development and aberrant pigmentation. Reduced numbers of both iridophores and melanocytes were observed in the head and ventral trunk of dicer1sa9205 homozygotes; the effect on melanocytes was stronger and detectable earlier in development. The expression of microphthalmia-associated transcription factor a (mitfa), the master gene for melanocytes differentiation, was enhanced in dicer1-depleted fish. Similarly, the expression of SRY-box containing gene 10 (sox10), required for mitfa activation, was higher in mutants than in wild types. In silico and in vivo analyses of either sox10 or mitfa 3'UTRs revealed conserved potential miRNA binding sites likely involved in the post-transcriptional regulation of both genes. Based on these findings, we propose that dicer1 participates in the gene regulatory network governing zebrafish melanocyte differentiation by controlling the expression of mitfa and sox10.


Assuntos
Cartilagem/anormalidades , Melanócitos/citologia , Ribonuclease III/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Regiões 3' não Traduzidas , Animais , Apoptose , Cartilagem/crescimento & desenvolvimento , Embrião não Mamífero/anormalidades , Embrião não Mamífero/anatomia & histologia , Regulação da Expressão Gênica , Cabeça , Larva/anatomia & histologia , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Mutação , Crista Neural/citologia , Ribonuclease III/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Transcription ; 8(1): 21-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696937

RESUMO

G-quadruplexes are non-canonical DNA secondary structures involved in several genomic and molecular processes. Here, we summarize the main G-quadruplex features and evidences proving the in vivo role on the transcriptional regulation of genes required for zebrafish embryonic development. We also discuss alternative strategies for specifically interfering G-quadruplex in vivo.


Assuntos
DNA/química , Transcrição Gênica , Peixe-Zebra/embriologia , Animais , Quadruplex G , Regulação da Expressão Gênica no Desenvolvimento , Modelos Moleculares , Conformação de Ácido Nucleico , Peixe-Zebra/genética
11.
Cell Death Dis ; 7(10): e2397, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27711076

RESUMO

Treacher Collins Syndrome (TCS) is a rare congenital disease (1:50 000 live births) characterized by craniofacial defects, including hypoplasia of facial bones, cleft palate and palpebral fissures. Over 90% of the cases are due to mutations in the TCOF1 gene, which codifies the nucleolar protein Treacle. Here we report a novel TCS-like zebrafish model displaying features that fully recapitulate the spectrum of craniofacial abnormalities observed in patients. As it was reported for a Tcof1+/- mouse model, Treacle depletion in zebrafish caused reduced rRNA transcription, stabilization of Tp53 and increased cell death in the cephalic region. An increase of ROS along with the overexpression of redox-responsive genes was detected; furthermore, treatment with antioxidants ameliorated the phenotypic defects of craniofacial anomalies in TCS-like larvae. On the other hand, Treacle depletion led to a lowering in the abundance of Cnbp, a protein required for proper craniofacial development. Tcof1 knockdown in transgenic zebrafish overexpressing cnbp resulted in barely affected craniofacial cartilage development, reinforcing the notion that Cnbp has a role in the pathogenesis of TCS. The cnbp overexpression rescued the TCS phenotype in a dose-dependent manner by a ROS-cytoprotective action that prevented the redox-responsive genes' upregulation but did not normalize the synthesis of rRNAs. Finally, a positive correlation between the expression of CNBP and TCOF1 in mesenchymal cells from both control and TCS subjects was found. Based on this, we suggest CNBP as an additional target for new alternative therapeutic treatments to reduce craniofacial defects not only in TCS but also in other neurocristopathies.


Assuntos
Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/genética , Disostose Mandibulofacial/complicações , Disostose Mandibulofacial/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Anormalidades Craniofaciais/patologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Disostose Mandibulofacial/patologia , Mesoderma/metabolismo , Modelos Biológicos , Oxirredução , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
Nucleic Acids Res ; 44(9): 4163-73, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26773060

RESUMO

G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology.


Assuntos
Quadruplex G , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Animais , Sequência de Bases , Linhagem Celular Tumoral , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , DNA de Cadeia Simples , Embrião não Mamífero/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
13.
Hum Mol Genet ; 24(24): 6877-85, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26385635

RESUMO

SPOAN syndrome is a neurodegenerative disorder mainly characterized by spastic paraplegia, optic atrophy and neuropathy (SPOAN). Affected patients are wheelchair bound after 15 years old, with progressive joint contractures and spine deformities. SPOAN patients also have sub normal vision secondary to apparently non-progressive congenital optic atrophy. A potential causative gene was mapped at 11q13 ten years ago. Here we performed next-generation sequencing in SPOAN-derived samples. While whole-exome sequencing failed to identify the causative mutation, whole-genome sequencing allowed to detect a homozygous 216-bp deletion (chr11.hg19:g.66,024,557_66,024,773del) located at the non-coding upstream region of the KLC2 gene. Expression assays performed with patient's fibroblasts and motor neurons derived from SPOAN patients showed KLC2 overexpression. Luciferase assay in constructs with 216-bp deletion confirmed the overexpression of gene reporter, varying from 48 to 74%, as compared with wild-type. Knockdown and overexpression of klc2 in Danio rerio revealed mild to severe curly-tail phenotype, which is suggestive of a neuromuscular disorder. Overexpression of a gene caused by a small deletion in the non-coding region is a novel mechanism, which to the best of our knowledge, was never reported before in a recessive condition. Although the molecular mechanism of KLC2 up-regulation still remains to be uncovered, such example adds to the importance of non-coding regions in human pathology.


Assuntos
Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Atrofias Ópticas Hereditárias/genética , Deleção de Sequência , Paraplegia Espástica Hereditária/genética , Animais , Cromossomos Humanos Par 11 , Análise Mutacional de DNA , Neuropatia Hereditária Motora e Sensorial/genética , Humanos , Cinesinas , Síndrome , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
14.
Biochim Biophys Acta ; 1839(11): 1151-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25151948

RESUMO

BACKGROUND: Cellular nucleic acid binding protein (CNBP) is a small and highly conserved protein with nucleic acid chaperone activity that binds single-stranded nucleic acids. Data collected so far suggests that CNBP is required for proper craniofacial development. Despite the advances achieved in the last decade, the identity of the molecular targets of CNBP responsible for its role in rostral head development remains elusive. METHODS: In this work we used the CNBP single-stranded DNA-consensus binding sequence to find out putative CNBP target genes present in the human, mouse, chicken, Xenopus and zebrafish genomes. RESULTS: Most of the identified genes are associated with embryonic developmental processes, being three of them (cdk14, ptk7 and tcf7l2) members of the Wnt signaling pathway. This finding, along with previous one showing that CNBP down-regulates the transcription of Wnt5, aimed our work to address the role of CNBP on the WNT signaling players and pathway regulation. Experiments carried out in zebrafish developing embryos revealed that craniofacial morphology was more adversely affected as CNBP abundance decreased. Furthermore, we observed that CNBP up-regulated in a dose-dependent fashion the transcription of cdk14, ptk7 and tcf7l2, which in turn was reflected in c-myc, ccnd1 and axin2 expression. CONCLUSIONS: RESULTS reveal a role of CNBP in transcriptional control of components of the Wnt signaling pathway, which might explain its requirement for proper craniofacial development.


Assuntos
Proteínas de Ligação a RNA/fisiologia , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Desenvolvimento Ósseo/genética , Galinhas , Embrião não Mamífero , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Receptores Proteína Tirosina Quinases/genética , Crânio/embriologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Xenopus , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
15.
Am J Hum Genet ; 94(1): 120-8, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24360810

RESUMO

Richieri-Costa-Pereira syndrome is an autosomal-recessive acrofacial dysostosis characterized by mandibular median cleft associated with other craniofacial anomalies and severe limb defects. Learning and language disabilities are also prevalent. We mapped the mutated gene to a 122 kb region at 17q25.3 through identity-by-descent analysis in 17 genealogies. Sequencing strategies identified an expansion of a region with several repeats of 18- or 20-nucleotide motifs in the 5' untranslated region (5' UTR) of EIF4A3, which contained from 14 to 16 repeats in the affected individuals and from 3 to 12 repeats in 520 healthy individuals. A missense substitution of a highly conserved residue likely to affect the interaction of eIF4AIII with the UPF3B subunit of the exon junction complex in trans with an expanded allele was found in an unrelated individual with an atypical presentation, thus expanding mutational mechanisms and phenotypic diversity of RCPS. EIF4A3 transcript abundance was reduced in both white blood cells and mesenchymal cells of RCPS-affected individuals as compared to controls. Notably, targeting the orthologous eif4a3 in zebrafish led to underdevelopment of several craniofacial cartilage and bone structures, in agreement with the craniofacial alterations seen in RCPS. Our data thus suggest that RCPS is caused by mutations in EIF4A3 and show that EIF4A3, a gene involved in RNA metabolism, plays a role in mandible, laryngeal, and limb morphogenesis.


Assuntos
Pé Torto Equinovaro/genética , RNA Helicases DEAD-box/genética , Fator de Iniciação 4A em Eucariotos/genética , Deformidades Congênitas da Mão/genética , Síndrome de Pierre Robin/genética , Alelos , Sequência de Aminoácidos , Animais , Osso e Ossos/anormalidades , Criança , Pré-Escolar , Mapeamento Cromossômico , RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Conformação Proteica , Peixe-Zebra/anormalidades
16.
Protein Expr Purif ; 93: 23-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161561

RESUMO

Cellular nucleic acid binding protein (CNBP) is a highly conserved multi-zinc knuckle protein that enhances c-MYC expression, is related to certain human muscular diseases and is required for proper rostral head development. CNBP binds to single-stranded DNA (ssDNA) and RNA and acts as nucleic acid chaperone. Despite the advances made concerning CNBP biological roles, a full knowledge about the structure-function relationship has not yet been achieved, likely due to difficulty in obtaining pure and tag-free CNBP. Here, we report a fast, simple, reproducible, and high-performance expression and purification protocol that provides recombinant tag-free CNBP from Escherichia coli cultures. We determined that tag-free CNBP binds its molecular targets with higher affinity than tagged-CNBP. Furthermore, fluorescence spectroscopy revealed the presence of a unique and conserved tryptophan, which is exposed to the solvent and involved, directly or indirectly, in nucleic acid binding. Size-exclusion HPLC revealed that CNBP forms homodimers independently of nucleic acid binding and coexist with monomers as non-interconvertible forms or in slow equilibrium. Circular dichroism spectroscopy showed that CNBP has a secondary structure dominated by random-coil and ß-sheet coincident with the sequence-predicted repetitive zinc knuckles motifs, which folding is required for CNBP structural stability and biochemical activity. CNBP structural stability increased in the presence of single-stranded nucleic acid targets similar to other unstructured nucleic acid chaperones. Altogether, data suggest that CNBP is a flexible protein with interspersed structured zinc knuckles, and acquires a more rigid structure upon nucleic acid binding.

17.
J Appl Toxicol ; 34(2): 214-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23401233

RESUMO

Zebrafish (Danio rerio) is increasingly employed for evaluating toxicity and drug discovery assays. Commonly experimental approaches for biotoxicity assessment are based on visual inspection or video recording. However, these techniques are limited for large-scale assays, as they demand either a time-consuming detailed inspection of the animals or intensive computing resources in order to analyze a considerable amount of screenshots. Recently, we have developed a simple methodology for tracking the locomotor activity of small animals cultured in microtiter plates. In this work, we implemented this automatic methodology, based on infrared (IR) microbeam scattering, for measuring behavioral activity in zebrafish larvae. We determined the appropriate culture conditions, number of animals and stage of development to get robust results. Furthermore, we validated this methodology as a rapid test for evaluating toxicity. By measuring the effects of reference compounds on larvae activity, we were able to estimate the concentration that could cause a 50% decrease in activity events values (AEC50), showing a strong linear correlation (R² = 0.91) with the LC50 values obtained with the standard DarT test. The toxicity order of the measured compounds was CuSO4 > 2,4-dinitrophenol > 3,4-dichloroaniline > SDS > sodium benzoate > EDTA > K2CrO4 ; regarding solvents, EtOH ≈ DMSO. In this study, we demonstrate that global swimming behavior could be a simple readout for toxicity, easy to scale-up in automated experiments. This approach is potentially applicable for fast ecotoxicity assays and whole-organism high-throughput compound screening, reducing the time and money required to evaluate unknown samples and to identify leading pharmaceutical compounds.


Assuntos
Ecotoxicologia/métodos , Atividade Motora/efeitos dos fármacos , Espalhamento de Radiação , Testes de Toxicidade , 2,4-Dinitrofenol/toxicidade , Compostos de Anilina , Animais , Cromatos/toxicidade , Sulfato de Cobre/toxicidade , Relação Dose-Resposta a Droga , Ácido Edético/toxicidade , Feminino , Larva/efeitos dos fármacos , Dose Letal Mediana , Masculino , Compostos de Potássio/toxicidade , Reprodutibilidade dos Testes , Benzoato de Sódio/toxicidade , Dodecilsulfato de Sódio/toxicidade , Peixe-Zebra
18.
PLoS One ; 8(5): e63234, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667590

RESUMO

CNBP is a nucleic acid chaperone implicated in vertebrate craniofacial development, as well as in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human muscle diseases. CNBP is highly conserved among vertebrates and has been implicated in transcriptional regulation; however, its DNA binding sites and molecular targets remain elusive. The main goal of this work was to identify CNBP DNA binding sites that might reveal target genes involved in vertebrate embryonic development. To accomplish this, we used a recently described yeast one-hybrid assay to identify DNA sequences bound in vivo by CNBP. Bioinformatic analyses revealed that these sequences are G-enriched and show high frequency of putative G-quadruplex DNA secondary structure. Moreover, an in silico approach enabled us to establish the CNBP DNA-binding site and to predict CNBP putative targets based on gene ontology terms and synexpression with CNBP. The direct interaction between CNBP and candidate genes was proved by EMSA and ChIP assays. Besides, the role of CNBP upon the identified genes was validated in loss-of-function experiments in developing zebrafish. We successfully confirmed that CNBP up-regulates tbx2b and smarca5, and down-regulates wnt5b gene expression. The highly stringent strategy used in this work allowed us to identify new CNBP target genes functionally important in different contexts of vertebrate embryonic development. Furthermore, it represents a novel approach toward understanding the biological function and regulatory networks involving CNBP in the biology of vertebrates.


Assuntos
Adenosina Trifosfatases/metabolismo , Desenvolvimento Embrionário/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Sítios de Ligação , Biologia Computacional , Sequência Consenso/genética , DNA/metabolismo , Quadruplex G , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Redes Reguladoras de Genes/genética , Genoma/genética , Humanos , Camundongos , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Proteína Wnt-5a , Peixe-Zebra/genética
19.
Mol Ecol Resour ; 13(3): 546-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23521844

RESUMO

This article documents the addition of 268 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alburnoides bipunctatus, Chamaerops humilis, Chlidonias hybrida, Cyperus papyrus, Fusarium graminearum, Loxigilla barbadensis, Macrobrachium rosenbergii, Odontesthes bonariensis, Pelteobagrus vachelli, Posidonia oceanica, Potamotrygon motoro, Rhamdia quelen, Sarotherodon melanotheron heudelotii, Sibiraea angustata, Takifugu rubripes, Tarentola mauritanica, Trimmatostroma sp. and Wallago attu. These loci were cross-tested on the following species: Alburnoides fasciatus, Alburnoides kubanicus, Alburnoides maculatus, Alburnoides ohridanus, Alburnoides prespensis, Alburnoides rossicus, Alburnoides strymonicus, Alburnoides thessalicus, Alburnoides tzanevi, Carassius carassius, Fusarium asiaticum, Leucaspius delineatus, Loxigilla noctis dominica, Pelecus cultratus, Phoenix canariensis, Potamotrygon falkneri, Trachycarpus fortune and Vimba vimba.


Assuntos
Bases de Dados Genéticas/estatística & dados numéricos , Repetições de Microssatélites/genética , Primers do DNA/genética , Especificidade da Espécie
20.
PLoS One ; 7(1): e29574, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22295061

RESUMO

Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development.


Assuntos
Modelos Animais de Doenças , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Sequência de Aminoácidos , Animais , Movimento Celular , Tamanho Celular , Biologia Computacional , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Disostose Mandibulofacial/patologia , Camundongos , Dados de Sequência Molecular , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Fosfoproteínas/química , Fosfoproteínas/deficiência , Homologia de Sequência de Aminoácidos , Crânio/embriologia , Crânio/metabolismo , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...