Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 169, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167818

RESUMO

Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a [Formula: see text] CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on  the same silicon technology compatible platform.

2.
Opt Express ; 31(11): 17098-17111, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381452

RESUMO

A promising alternative to bulk materials for the nonlinear coupling of optical fields is provided by photonic integrated circuits based on heterostructures made of asymmetric-coupled quantum wells. These devices achieve a huge nonlinear susceptivity but are affected by strong absorption. Here, driven by the technological relevance of the SiGe material system, we focus on Second-Harmonic Generation in the mid-infrared spectral region, realized by means of Ge-rich waveguides hosting p-type Ge/SiGe asymmetric coupled quantum wells. We present a theoretical investigation of the generation efficiency in terms of phase mismatch effects and trade-off between nonlinear coupling and absorption. To maximize the SHG efficiency at feasible propagation distances, we also individuate the optimal density of quantum wells. Our results indicate that conversion efficiencies of ≈ 0.6%/W can be achieved in WGs featuring lengths of few hundreds µm only.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...