Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 12(9): 3575-3584, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38456190

RESUMO

Enzymatic decarboxylation of biobased hydroxycinnamic acids gives access to phenolic styrenes for adhesive production. Phenolic acid decarboxylases are proficient enzymes that have been applied in aqueous systems, organic solvents, biphasic systems, and deep eutectic solvents, which makes stability a key feature. Stabilization of the enzyme would increase the total turnover number and thus reduce the energy consumption and waste accumulation associated with biocatalyst production. In this study, we used ancestral sequence reconstruction to generate thermostable decarboxylases. Investigation of a set of 16 ancestors resulted in the identification of a variant with an unfolding temperature of 78.1 °C and a half-life time of 45 h at 60 °C. Crystal structures were determined for three selected ancestors. Structural attributes were calculated to fit different regression models for predicting the thermal stability of variants that have not yet been experimentally explored. The models rely on hydrophobic clusters, salt bridges, hydrogen bonds, and surface properties and can identify more stable proteins out of a pool of candidates. Further stabilization was achieved by the application of mixtures of natural deep eutectic solvents and buffers. Our approach is a straightforward option for enhancing the industrial application of the decarboxylation process.

2.
ChemCatChem ; 13(9): 2262-2277, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262629

RESUMO

The development of sustainable processes for the valorization of byproducts and other waste streams remains an ongoing challenge in the field of catalysis. Racemic borneol, isoborneol and camphor are currently produced from α-pinene, a side product from the production of cellulose. The pure enantiomers of these monoterpenoids have numerous applications in cosmetics and act as reagents for asymmetric synthesis, making an enzymatic route for their separation into optically pure enantiomers a desirable goal. Known short-chain borneol-type dehydrogenases (BDHs) from plants and bacteria lack the required specificity, stability or activity for industrial utilization. Prompted by reports on the presence of pure (-)-borneol and (-)-camphor in essential oils from rosemary, we set out to investigate dehydrogenases from the genus Salvia and discovered a dehydrogenase with high specificity (E>120) and high specific activity (>0.02 U mg-1) for borneol and isoborneol. Compared to other specific dehydrogenases, the one reported here shows remarkably higher stability, which was exploited to obtain the first three-dimensional structure of an enantiospecific borneol-type short-chain dehydrogenase. This, together with docking studies, led to the identification of a hydrophobic pocket in the enzyme that plays a crucial role in the stereo discrimination of bornane-type monoterpenoids. The kinetic resolution of borneol and isoborneol can be easily integrated into the existing synthetic route from α-pinene to camphor thereby allowing the facile synthesis of optically pure monoterpenols from an abundant renewable source.

3.
Chembiochem ; 22(20): 2951-2956, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34033201

RESUMO

Racemic camphor and isoborneol are readily available as industrial side products, whereas (1R)-camphor is available from natural sources. Optically pure (1S)-camphor, however, is much more difficult to obtain. The synthesis of racemic camphor from α-pinene proceeds via an intermediary racemic isobornyl ester, which is then hydrolyzed and oxidized to give camphor. We reasoned that enantioselective hydrolysis of isobornyl esters would give facile access to optically pure isoborneol and camphor isomers, respectively. While screening of a set of commercial lipases and esterases in the kinetic resolution of racemic monoterpenols did not lead to the identification of any enantioselective enzymes, the cephalosporin Esterase B from Burkholderia gladioli (EstB) and Esterase C (EstC) from Rhodococcus rhodochrous showed outstanding enantioselectivity (E>100) towards the butyryl esters of isoborneol, borneol and fenchol. The enantioselectivity was higher with increasing chain length of the acyl moiety of the substrate. The kinetic resolution of isobornyl butyrate can be easily integrated into the production of camphor from α-pinene and thus allows the facile synthesis of optically pure monoterpenols from a renewable side-product.


Assuntos
Monoterpenos Bicíclicos/química , Cânfora/síntese química , Monoterpenos Bicíclicos/metabolismo , Burkholderia gladioli/enzimologia , Cânfora/química , Cânfora/metabolismo , Cefalosporinas/metabolismo , Estrutura Molecular , Rhodococcus/enzimologia , Serina Endopeptidases/metabolismo , Estereoisomerismo
4.
Chembiochem ; 22(10): 1833-1840, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33539041

RESUMO

Light-dependent enzymes are a rare type of biocatalyst with high potential for research and biotechnology. A recently discovered fatty acid photo-decarboxylase from Chlorella variabilis NC64A (CvFAP) converts fatty acids to the corresponding hydrocarbons only when irradiated with blue light (400 to 520 nm). To expand the available catalytic diversity for fatty acid decarboxylation, we reconstructed possible ancestral decarboxylases from a set of 12 extant sequences that were classified under the fatty acid decarboxylases clade within the glucose-methanol choline (GMC) oxidoreductase family. One of the resurrected enzymes (ANC1) showed activity in the decarboxylation of fatty acids, showing that the clade indeed contains several photo-decarboxylases. ANC1 has a 15 °C higher melting temperature (Tm ) than the extant CvFAP. Its production yielded 12-fold more protein than this wild type decarboxylase, which offers practical advantages for the biochemical investigation of this photoenzyme. Homology modelling revealed amino acid substitutions to more hydrophilic residues at the surface and shorter flexible loops compared to the wild type. Using ancestral sequence reconstruction, we have expanded the existing pool of confirmed fatty acid photo-decarboxylases, providing access to a more robust catalyst for further development via directed evolution.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/classificação , Chlorella/enzimologia , Descarboxilação , Ácidos Graxos/química , Simulação de Dinâmica Molecular , Oxirredutases/classificação , Filogenia , Estabilidade Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Temperatura de Transição
5.
ACS Sustain Chem Eng ; 8(23): 8604-8612, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32953283

RESUMO

Fe(II)- and α-ketoglutarate dependent dioxygenases have emerged as important catalysts for the preparation of non-natural amino acids. The stoichiometric supply of the cosubstrate α-ketoglutarate (αKG) is an important cost factor. A combination of the N-succinyl amino acid hydroxylase SadA with an l-glutamate oxidase (LGOX) allowed for coupling in situ production of αKG to stereoselective αKG-dependent dioxygenases in a one-pot/two-step cascade reaction. Both enzymes were used as immobilized enzymes and tested in a preparative scale setup under process-near conditions. Oxygen supply, enzyme, and substrate loading of the oxidation of glutamate were investigated under controlled reaction conditions on a small scale before upscaling to a 1 L stirred tank reactor. LGOX was applied with a substrate concentration of 73.6 g/L (339 mM) and reached a space-time yield of 14.2 g/L/h. Additionally, the enzyme was recycled up to 3 times. The hydroxylase SadA reached a space-time yield of 1.2 g/L/h at a product concentration of 9.3 g/L (40 mM). For both cascade reactions, the supply with oxygen was identified as a critical parameter. The results underline the robustness and suitability of α-ketoglutarate dependent dioxygenases for application outside of living cells.

6.
Proteomics ; 17(5)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045221

RESUMO

Probiotic cultures encounter oxidative conditions during manufacturing, yet protein abundance changes induced by such stress have not been characterized for some of the most common probiotics and starters. This comparative proteomics investigation focuses on the response by Lactobacillus acidophilus NCFM to H2 O2, simulating an oxidative environment. Bacterial growth was monitored by BioScreen and batch cultures were harvested at exponential phase for protein profiling of stress responses by 2D gel based comparative proteomics. Proteins identified in 19 of 21 spots changing in abundance due to H2 O2 were typically related to carbohydrate and energy metabolism, cysteine biosynthesis, and stress. In particular, increased cysteine synthase activity may accumulate a cysteine pool relevant for protein stability, enzyme catalysis, and the disulfide-reducing pathway. The stress response further included elevated abundance of biomolecules reducing damage such as enzymes from DNA repair pathways and metabolic enzymes with active site cysteine residues. By contrast, a protein-refolding chaperone showed reduced abundance, possibly reflecting severe oxidative protein destruction that was not overcome by refolding. The proteome analysis provides novel insight into resistance mechanisms in lactic acid bacteria against reactive oxygen species and constitutes a valuable starting point for improving industrial processes, food design, or strain engineering preserving microorganism viability.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/biossíntese , Lactobacillus acidophilus/fisiologia , Estresse Oxidativo , Proteômica/métodos , Cisteína/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillus acidophilus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...