Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Childs Nerv Syst ; 40(3): 673-684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37812266

RESUMO

PURPOSE: Intraventricular hemorrhage (IVH) of prematurity can lead to hydrocephalus, sometimes necessitating permanent cerebrospinal fluid (CSF) diversion. We sought to characterize the relationship between head circumference (HC) and ventricular size in IVH over time to evaluate the clinical utility of serial HC measurements as a metric in determining the need for CSF diversion. METHODS: We included preterm infants with IVH born between January 2000 and May 2020. Three measures of ventricular size were obtained: ventricular index (VI), Evan's ratio (ER), and frontal occipital head ratio (FOHR). The Pearson correlations (r) between the initial (at birth) paired measurements of HC and ventricular size were reported. Multivariable longitudinal regression models were fit to examine the HC:ventricle size ratio, adjusting for the age of the infant, IVH grade (I/II vs. III/IV), need for CSF diversion, and sex. RESULTS: A total of 639 patients with an average gestational age of 27.5 weeks were included. IVH grade I/II and grade III/IV patients had a positive correlation between initial HC and VI (r = 0.47, p < 0.001 and r = 0.48, p < 0.001, respectively). In our longitudinal models, patients with a low-grade IVH (I/II) had an HC:VI ratio 0.52 higher than those with a high-grade IVH (p-value < 0.001). Patients with low-grade IVH had an HC:ER ratio 12.94 higher than those with high-grade IVH (p-value < 0.001). Patients with low-grade IVH had a HC:FOHR ratio 12.91 higher than those with high-grade IVH (p-value < 0.001). Infants who did not require CSF diversion had an HC:VI ratio 0.47 higher than those who eventually did (p < 0.001). Infants without CSF diversion had an HC:ER ratio 16.53 higher than those who received CSF diversion (p < 0.001). Infants without CSF diversion had an HC:FOHR ratio 15.45 higher than those who received CSF diversion (95% CI (11.34, 19.56), p < 0.001). CONCLUSIONS: There is a significant difference in the ratio of HC:VI, HC:ER, and HC:FOHR size between patients with high-grade IVH and low-grade IVH. Likewise, there is a significant difference in HC:VI, HC:ER, and HC:FOHR between those who did and did not have CSF diversion. The routine assessments of both head circumference and ventricle size by ultrasound are important clinical tools in infants with IVH of prematurity.


Assuntos
Hidrocefalia , Doenças do Prematuro , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Ventrículos Cerebrais/cirurgia , Hidrocefalia/cirurgia , Idade Gestacional , Doenças do Prematuro/cirurgia , Hemorragia Cerebral/cirurgia , Estudos Retrospectivos
2.
J Neurosci ; 42(2): 325-348, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819339

RESUMO

Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPßCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPßCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPßCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPßCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPßCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPßCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPßCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPßCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPßCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Encéfalo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/tratamento farmacológico , Fatores Etários , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resultado do Tratamento
3.
J Pharmacol Exp Ther ; 380(2): 126-141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34893553

RESUMO

The aim of this study was to test whether poststroke oral administration of a small molecule p75 neurotrophin receptor (p75NTR) modulator (LM11A-31) can augment neuronal survival and improve recovery in a mouse model of stroke. Mice were administered LM11A-31 for up to 12 weeks, beginning 1 week after stroke. Metabolomic analysis revealed that after 2 weeks of daily treatment, mice that received LM11A-31 were distinct from vehicle-treated mice by principal component analysis and had higher levels of serotonin, acetylcholine, and dopamine in their ipsilateral hemisphere. LM11A-31 treatment also improved redox homeostasis by restoring reduced glutathione. It also offset a stroke-induced reduction in glycolysis by increasing acetyl-CoA. There was no effect on cytokine levels in the infarct. At 13 weeks after stroke, adaptive immune cell infiltration in the infarct was unchanged in LM11A-31-treated mice, indicating that LM11A-31 does not alter the chronic inflammatory response to stroke at the site of the infarct. However, LM11A-31-treated mice had less brain atrophy, neurodegeneration, tau pathology, and microglial activation in other regions of the ipsilateral hemisphere. These findings correlated with improved recovery of motor function on a ladder test, improved sensorimotor and cognitive abilities on a nest construction test, and less impulsivity in an open field test. These data support small molecule modulation of the p75NTR for preserving neuronal health and function during stroke recovery. SIGNIFICANCE STATEMENT: The findings from this study introduce the p75 neurotrophin receptor as a novel small molecule target for promotion of stroke recovery. Given that LM11A-31 is in clinical trials as a potential therapy for Alzheimer's disease, it could be considered as a candidate for assessment in stroke or vascular dementia studies.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Isoleucina/análogos & derivados , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Glutationa/metabolismo , Glicólise , Infarto da Artéria Cerebral Média/metabolismo , Isoleucina/farmacologia , Isoleucina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Neurotransmissores/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo
4.
Brain Behav Immun ; 91: 578-586, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956832

RESUMO

Up to 30% of stroke patients experience cognitive decline within one year of their stroke. There are currently no FDA-approved drugs that can prevent post-stroke cognitive decline, in part due to a poor understanding of the mechanisms involved. We have previously demonstrated that a B-lymphocyte response to stroke, marked by IgA + cells, can cause delayed cognitive dysfunction in mice and that a similar adaptive immune response occurs in the brains of some human stroke patients that suffer from vascular dementia. The stimuli which trigger B-lymphocyte activation following stroke, and their target antigens, are still unknown. Therefore, to learn more about the mechanisms by which B-lymphocytes become activated following stroke we first characterized the temporal kinetics of the B-lymphocyte, T-lymphocyte, and plasma cell (PC) response to stroke in the brain by immunohistochemistry (IHC). We discovered that B-lymphocyte, T-lymphocyte, and plasma cell infiltration within the infarct progressively increases between 2 and 7 weeks after stroke. We then compared the B-lymphocyte response to stroke in WT, MHCII-/-, CD4-/-, and MyD88-/- mice to determine if B-lymphocytes mature into IgA + PCs through a T-lymphocyte and MyD88 dependent mechanism. Our data from a combination of IHC and flow cytometry indicate that following stroke, a population of IgA + PCs develops independently of CD4 + helper T-lymphocytes and MyD88 signaling. Subsequent sequencing of immunoglobulin genes of individual IgA + PCs present within the infarct identified a novel population of natural antibodies with few somatic mutations in complementarity-determining regions. These findings indicate that a population of IgA + PCs develops in the infarct following stroke by B-lymphocytes interacting with one or more thymus independent type 2 (TI-2) antigens, and that they produce IgA natural antibodies.


Assuntos
Ativação Linfocitária , Acidente Vascular Cerebral , Animais , Linfócitos B , Linfócitos T CD4-Positivos , Humanos , Imunoglobulina A , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA