Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 134(1): 203-215, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519571

RESUMO

Although physiological responses to hemorrhage are well-studied, hemorrhage is often accompanied by trauma, and it remains unclear how injury affects these responses. This study examined effects of extremity trauma on cardiorespiratory responses and survival to moderate (37%; H-37) or severe (50%; H-50) hemorrhage in rats. Transmitter and carotid catheter implantation and extremity trauma (fibular fracture and muscle injury) were conducted 2 wk, 24 h, and 90 min, respectively, before conscious hemorrhage. Mean arterial pressure (MAP) and heart rate (HR; via telemetry), and respiration rate (RR), minute volume (MV), and tidal volume (TV; via plethysmography) were measured throughout the 25 min hemorrhage and remainder of the 4 h observation period. There were four groups: 1) H-37, no trauma (NT; n = 17); 2) H-37, extremity trauma (T, n = 18); 3) H-50, NT (n = 20); and 4) H-50, T (n = 20). For H-37, during and after hemorrhage, T increased HR (P ≤ 0.031) and MV (P ≤ 0.048) compared with NT rats. During H-50, T increased HR (0.041) and MV (P = 0.043). After hemorrhage, T increased MV (P = 0.008) but decreased HR (P = 0.007) and MAP (P = 0.039). All cardiorespiratory differences between T and NT groups were intermittent. Importantly, both survival time (159.8 ± 78.2 min vs. 211.9 ± 60.3 min; P = 0.022; mean ± SD) and percent survival (45% vs. 80%; P = 0.048) were less in T versus NT rats after H-50. Trauma interacts with physiological systems in a complex manner and no single cardiorespiratory measure was sufficiently altered to indicate that it alone could account for increased mortality after H-50.NEW & NOTEWORTHY In both civilian and military settings, severe hemorrhage rarely occurs in the absence of tissue trauma, yet many animal models for the study of hemorrhage do not include significant tissue trauma. This study using conscious unrestrained rats clearly demonstrates that extremity trauma worsens the probability of survival after a severe hemorrhage. Although no single cardiorespiratory factor accounted for the increased mortality, multiple modest time-related cardiorespiratory responses to the trauma were observed suggesting that their combined dysfunction may have contributed to the reduced survival.


Assuntos
Hemorragia , Pletismografia , Ratos , Animais , Modelos Animais , Frequência Cardíaca , Extremidades
2.
J Appl Physiol (1985) ; 130(5): 1583-1593, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830812

RESUMO

Ketamine is the recommended analgesic on the battlefield for soldiers with hemorrhage, despite a lack of supportive evidence from laboratory or clinical studies. Hence, this study determined the effects of ketamine analgesia on cardiorespiratory responses and survival to moderate (37% blood volume; n = 8/group) or severe hemorrhage (50% blood volume; n = 10/group) after trauma in rats. We used a conscious hemorrhage model with extremity trauma (fibular fracture + soft tissue injury) while measuring mean arterial pressure (MAP), heart rate (HR), and body temperature (Tb) by telemetry, and respiration rate (RR), minute volume (MV), and tidal volume (TV) via whole body plethysmography. Male rats received saline (S) or 5.0 mg/kg ketamine (K) (100 µL/100 g body wt) intra-arterially after trauma and hemorrhage. All rats survived 37% hemorrhage. For 50% hemorrhage, neither survival times [180 min (SD 78) vs. 209 min (SD 66)] nor percent survival (60% vs. 80%) differed between S- and K-treated rats. After 37% hemorrhage, K (compared with S) increased MAP and decreased Tb and MV. After 50% hemorrhage, K (compared with S) increased MAP but decreased HR and MV. K effects on cardiorespiratory function were time dependent, significant but modest, and transient at the analgesic dose given. K effects on Tb were also significant but modest and more prolonged. With the use of this rat model, our data support the use of K as an analgesic in injured, hypovolemic patients.NEW & NOTEWORTHY Ketamine administration at a dose shown to alleviate pain in nonhemorrhaged rats with extremity trauma had only modest and transient effects on multiple aspects of cardiorespiratory function after both moderate (37%) and severe (50%) traumatic hemorrhages. Such effects did not alter survival.


Assuntos
Analgesia , Ketamina , Animais , Hemorragia/tratamento farmacológico , Humanos , Ketamina/farmacologia , Masculino , Dor , Manejo da Dor , Ratos
3.
Physiol Genomics ; 43(12): 758-65, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21487033

RESUMO

To find a genetic basis for differential ability to survive severe hemorrhage, we previously showed eightfold differences in survival times among inbred rat strains. We assumed that rat strains had similar normalized blood volumes (NBV; ml/100 g body wt). As NBV might vary among strains and constitute one genetic variable affecting survival time to hemorrhage, in experiment 1 of the current studies we first measured total blood volumes and calculated NBV in specific inbred rat strains (Brown Norway/Medical College of Wisconsin, BN; Dark Agouti, DA; Fawn Hooded Hypertensive, FHH; Lewis, LEW; and Dahl Salt-Sensitive, SS) previously found to be divergent in survival time. NBV differed by 20% (P < 0.01; BN > SS > FHH = LEW = DA) and had a heritability (h(2)) of 0.56. Hence, differential survival times in our previously published study might reflect strain-dependent differences in NBV. Then studies were conducted wherein rats were catheterized and, ∼24 h later, 47% of their blood volume was removed; these rats were observed for a maximum of 4 h. In experiment 2, blood volumes were measured the day prior to hemorrhage. Percent survival and survival time did not differ among strains. To obviate possible confounding effects of blood volume determination, in experiment 3 the average NBV for each strain was used to determine hemorrhage volumes. Percent survival (P < 0.01) and survival times (P < 0.001) were different with DA demonstrating the best (62.5%, 190 ± 29 min) and BN the worst (0%, 52 ± 5 min) survival responses. These data indicate that both blood volume and survival time after hemorrhage in rats are heritable quantitative traits, and continue to suggest that genetic assessment of these phenotypes might lead to novel therapeutics to improve survival to hemorrhage.


Assuntos
Volume Sanguíneo/fisiologia , Hemorragia/mortalidade , Hemorragia/fisiopatologia , Característica Quantitativa Herdável , Ratos Endogâmicos/genética , Análise de Variância , Animais , Volume Sanguíneo/genética , Hemorragia/genética , Ratos , Especificidade da Espécie , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...