Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Dev Psychopathol ; : 1-10, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738358

RESUMO

Substance use disorders among juveniles are a major public health concern and are often intertwined with other psychosocial risk factors including antisocial behavior. Identifying etiological risks and mechanisms promoting substance use disorders remains a high priority for informing more focused interventions in high-risk populations. The present study examined brain gray matter structure in relation to substance use severity among n = 152 high-risk, incarcerated boys (aged 14-20). Substance use severity was positively associated with gray matter volume across several frontal/striatal brain regions including amygdala, pallidum, putamen, insula, and orbitofrontal cortex. Effects were apparent when using voxel-based-morphometric analysis, as well as in whole-brain, data-driven, network-based approaches (source-based morphometry). These findings support the hypothesis that elevated gray matter volume in striatal reward circuits may be an endogenous marker for vulnerability to severe substance use behaviors among youth.

2.
Inorg Chem ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748735

RESUMO

19F parashift probes with paramagnetically shifted reporter nuclei provide attractive platforms to develop molecular imaging probes. These probes enable ratiometric detection of molecular disease markers using a direct detection technique. Here, we describe a series of trivalent lanthanide (Ln(III)) complexes that are structural analogues of the clinically approved MR contrast agent (CA) ProHance to obtain LnL 19F parashift probes. We evaluated trans-gadolinium paramagnetic lanthanides compared to diamagnetic YL for 19F chemical shift and relaxation rate enhancement. The paramagnetic contribution to chemical shift (δPCS) for paramagnetic LnL exhibited either shifts to lower frequency (δPCS < 0 for TbL, DyL, and HoL) or shifts to higher frequency (δPCS > 0 for ErL, TmL, and YbL) compared to YL 19F spectroscopic signal. Zero-echo time pulse sequences achieved 56-fold sensitivity enhancement for DyL over YL, while developing probe-specific pulse sequences with fast delay times and acquisition times achieved 0.6-fold enhancement in limit of detection for DyL. DyL provides an attractive platform to develop 19F parashift probes for ratiometric detection of enzymatic activity.

3.
J Proteome Res ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497708

RESUMO

We introduce single cell Proteoform imaging Mass Spectrometry (scPiMS), which realizes the benefit of direct solvent extraction and MS detection of intact proteins from single cells dropcast onto glass slides. Sampling and detection of whole proteoforms by individual ion mass spectrometry enable a scalable approach to single cell proteomics. This new scPiMS platform addresses the throughput bottleneck in single cell proteomics and boosts the cell processing rate by several fold while accessing protein composition with higher coverage.

4.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328163

RESUMO

Tissues achieve and maintain their sizes through active feedback, whereby cells collectively regulate proliferation and differentiation so as to facilitate homeostasis and the ability to respond to disturbances. One of the best understood feedback mechanisms-renewal control-achieves remarkable feats of robustness in determining and maintaining desired sizes. Yet in a variety of biologically relevant situations, we show that stochastic effects should cause rare but catastrophic failures of renewal control. We define the circumstances under which this occurs and raise the possibility such events account for important non-genetic steps in the development of cancer. We further suggest that the spontaneous stochastic reversal of these events could explain cases of cancer normalization or dormancy following treatment. Indeed, we show that the kinetics of post-treatment recurrence for many cancers are often better fit by a model of stochastic re-emergence due to loss of collective proliferative control, than by deterministic models of cancer relapse.

5.
R Soc Open Sci ; 10(10): 230968, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830017

RESUMO

Most living reptile diversity is concentrated in Squamata (lizards, including snakes), which have poorly known origins in space and time. Recently, †Cryptovaranoides microlanius from the Late Triassic of the United Kingdom was described as the oldest crown squamate. If true, this result would push back the origin of all major lizard clades by 30-65 Myr and suggest that divergence times for reptile clades estimated using genomic and morphological data are grossly inaccurate. Here, we use computed tomography scans and expanded phylogenetic datasets to re-evaluate the phylogenetic affinities of †Cryptovaranoides and other putative early squamates. We robustly reject the crown squamate affinities of †Cryptovaranoides, and instead resolve †Cryptovaranoides as a potential member of the bird and crocodylian total clade, Archosauromorpha. Bayesian total evidence dating supports a Jurassic origin of crown squamates, not Triassic as recently suggested. We highlight how features traditionally linked to lepidosaurs are in fact widespread across Triassic reptiles. Our study reaffirms the importance of critically choosing and constructing morphological datasets and appropriate taxon sampling to test the phylogenetic affinities of problematic fossils and calibrate the Tree of Life.

6.
Nat Methods ; 20(8): 1174-1178, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468619

RESUMO

Multiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.


Assuntos
Anticorpos , Recursos Comunitários , Humanos , Reprodutibilidade dos Testes , Diagnóstico por Imagem
7.
ACS Appl Bio Mater ; 6(2): 591-602, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36626688

RESUMO

Diagnostic medical imaging utilizes magnetic resonance (MR) to provide anatomical, functional, and molecular information in a single scan. Nanoparticles are often labeled with Gd(III) complexes to amplify the MR signal of contrast agents (CAs) with large payloads and high proton relaxation efficiencies (relaxivity, r1). This study examined the MR performance of two structurally unique cages, AaLS-13 and OP, labeled with Gd(III). The cages have characteristics relevant for the development of theranostic platforms, including (i) well-defined structure, symmetry, and size; (ii) the amenability to extensive engineering; (iii) the adjustable loading of therapeutically relevant cargo molecules; (iv) high physical stability; and (v) facile manufacturing by microbial fermentation. The resulting conjugates showed significantly enhanced proton relaxivity (r1 = 11-18 mM-1 s-1 at 1.4 T) compared to the Gd(III) complex alone (r1 = 4 mM-1 s-1). Serum phantom images revealed 107% and 57% contrast enhancements for Gd(III)-labeled AaLS-13 and OP cages, respectively. Moreover, proton nuclear magnetic relaxation dispersion (1H NMRD) profiles showed maximum relaxivity values of 50 mM-1 s-1. Best-fit analyses of the 1H NMRD profiles attributed the high relaxivity of the Gd(III)-labeled cages to the slow molecular tumbling of the conjugates and restricted local motion of the conjugated Gd(III) complex.


Assuntos
Nanopartículas , Prótons , Meios de Contraste/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos
8.
J Biol Chem ; 299(1): 102768, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470426

RESUMO

The KRAS gene is one of the most frequently mutated oncogenes in human cancer and gives rise to two isoforms, KRAS4A and KRAS4B. KRAS post-translational modifications (PTMs) have the potential to influence downstream signaling. However, the relationship between KRAS PTMs and oncogenic mutations remains unclear, and the extent of isoform-specific modification is unknown. Here, we present the first top-down proteomics study evaluating both KRAS4A and KRAS4B, resulting in 39 completely characterized proteoforms across colorectal cancer cell lines and primary tumor samples. We determined which KRAS PTMs are present, along with their relative abundance, and that proteoforms of KRAS4A versus KRAS4B are differentially modified. Moreover, we identified a subset of KRAS4B proteoforms lacking the C185 residue and associated C-terminal PTMs. By confocal microscopy, we confirmed that this truncated GFP-KRAS4BC185∗ proteoform is unable to associate with the plasma membrane, resulting in a decrease in mitogen-activated protein kinase signaling pathway activation. Collectively, our study provides a reference set of functionally distinct KRAS proteoforms and the colorectal cancer contexts in which they are present.


Assuntos
Neoplasias Colorretais , Proteínas Quinases Ativadas por Mitógeno , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Humanos , Neoplasias Colorretais/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Proteômica , Proteínas Quinases Ativadas por Mitógeno/metabolismo
9.
Clin Biomech (Bristol, Avon) ; 109: 105290, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-33610388

RESUMO

INTRODUCTION: Radiocapitellar joint arthroplasty is a commonly performed procedure, which often leads to early failure or instability. Few studies assess the effect of radiocapitellar joint arthroplasty on the ulnohumeral joint. We hypothesized that static forces of contact (compressing cartilage, or cartilage relaxation contact force) would reveal the effect of varying radial head implant size and elbow position on the ulnohumeral joint. METHODS: A minimally-invasive method of measuring cartilage relaxation contact force was utilized in 10 fresh-frozen human cadaveric specimens that did not require significant dissection or intraarticular sensor placement. Specimens were rigidly fixed in various positions of elbow flexion and forearm pronosupination with increasing radial head implant lengths. Uniaxial distracting forces were applied and displacement was repeatedly measured with resultant best-fit polynomial curves to determine inflections corresponding to the force required to overcome static cartilage relaxation as in previous work. FINDINGS: Baseline mean (intra-cadaver) cartilage relaxation contact force was 11.8 N (standard error of the mean = 0.3) at 90° of elbow flexion and neutral rotation. There was little variation within specimens (Intraclass correlation coefficient > 0.94). Cartilage relaxation contact force increased at the ulnohumeral joint with radial head implant overstuffing (> 4 mm, P < 0.05) and elbow flexion (120°, P < 0.001). Pronosupination altered cartilage relaxation contact force in an implant-length independent manner (P < 0.05). INTERPRETATION: Radiocapitellar joint arthroplasty implant length and elbow joint position independently contribute to increased cartilage relaxation contact force at the ulnohumeral joint. This further supports attempts at anatomic reconstruction of the radiocapitellar joint to prevent pathologic ulnohumeral joint loading.


Assuntos
Articulação do Cotovelo , Prótese Articular , Humanos , Articulação do Cotovelo/cirurgia , Rádio (Anatomia)/cirurgia , Antebraço , Artroplastia , Cadáver , Fenômenos Biomecânicos
10.
Sci Rep ; 12(1): 14469, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008512

RESUMO

Traditionally considered the earliest-diverging group of snakes, scolecophidians are central to major evolutionary paradigms regarding squamate feeding mechanisms and the ecological origins of snakes. However, quantitative analyses of these phenomena remain scarce. Herein, we therefore assess skull modularity in squamates via anatomical network analysis, focusing on the interplay between 'microstomy' (small-gaped feeding), fossoriality, and miniaturization in scolecophidians. Our analyses reveal distinctive patterns of jaw connectivity across purported 'microstomatans', thus supporting a more complex scenario of jaw evolution than traditionally portrayed. We also find that fossoriality and miniaturization each define a similar region of topospace (i.e., connectivity-based morphospace), with their combined influence imposing further evolutionary constraint on skull architecture. These results ultimately indicate convergence among scolecophidians, refuting widespread perspectives of these snakes as fundamentally plesiomorphic and morphologically homogeneous. This network-based examination of skull modularity-the first of its kind for snakes, and one of the first to analyze squamates-thus provides key insights into macroevolutionary trends among squamates, with particular implications for snake origins and evolution.


Assuntos
Evolução Biológica , Serpentes , Animais , Cabeça , Filogenia , Crânio/anatomia & histologia , Serpentes/anatomia & histologia
11.
J Exp Biol ; 225(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938394

RESUMO

Airborne sound signals function as key mediators of mate-choice, aggression and other social interactions in a wide range of vertebrate and invertebrate animals. Calling animals produce more than sound, however. When displaying on or near a solid substrate, such as vegetation or soil, they also unavoidably excite substrate vibrations because of the physics of sound production and of acoustic propagation, and these vibrations can propagate to receivers. Despite their near ubiquity, these vibrational signal components have received very little research attention and in vertebrates it is unknown whether they are relevant to mate-choice, an important driver of evolutionary divergence. Here, we show that female red-eyed treefrogs are more than twice as likely to choose a male mating call when airborne sound is paired with its corresponding substrate vibrations. Furthermore, males of the same species are more aggressive towards and display a greater range of aggressive behaviors in response to bimodal (sound and vibration) versus unimodal (sound or vibration alone) calls. In aggressive contexts, at least, air- and substrate-borne signal components function non-redundantly. These results are a clear demonstration that vibrations produced by a calling animal can function together with airborne sound to markedly enhance the function of a signal. If this phenomenon proves widespread, this finding has the potential to substantially influence our understanding of the function and evolution of acoustic signals.


Assuntos
Anuros , Som , Acústica , Agressão , Animais , Anuros/fisiologia , Feminino , Masculino , Comportamento Sexual Animal/fisiologia , Vibração , Vocalização Animal/fisiologia
12.
Sci Adv ; 8(33): eabq1898, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984885

RESUMO

Climate change-induced mass extinctions provide unique opportunities to explore the impacts of global environmental disturbances on organismal evolution. However, their influence on terrestrial ecosystems remains poorly understood. Here, we provide a new time tree for the early evolution of reptiles and their closest relatives to reconstruct how the Permian-Triassic climatic crises shaped their long-term evolutionary trajectory. By combining rates of phenotypic evolution, mode of selection, body size, and global temperature data, we reveal an intimate association between reptile evolutionary dynamics and climate change in the deep past. We show that the origin and phenotypic radiation of reptiles was not solely driven by ecological opportunity following the end-Permian extinction as previously thought but also the result of multiple adaptive responses to climatic shifts spanning 57 million years.

13.
Waste Manag ; 147: 60-72, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623262

RESUMO

Air intrusion into municipal solid waste landfills can cause a localized switch from anaerobic to aerobic biodegradation adjacent to the intrusion. The purpose of this study was to explore the effects on temperature and gas composition of air intrusion into an idealized anaerobic landfill. Two scenarios of air intrusion and injection were simulated using a mechanistic landfill model built into TOUGH2. The modeled landfill geometry and properties are based on an actual U.S. landfill. The simulation results show that air intrusion can cause a quick switch from anaerobic to aerobic conditions and as a result, cause a fast increase in temperature of up to 30 °C associated with stimulation of aerobic biodegradation reactions. Associated with the change to aerobic conditions is a decrease in CH4/CO2 (v/v) ratio in the landfill gas. Depending on the air flow rate intruding or injecting into the landfill, localized aerobic biodegradation is stimulated and as a result heat generation rate of 10 to 150 W/m3 leads to temperature increase. Temperature increase near a temporary air intrusion lasts no longer than a few weeks while the high temperatures in deep layers could last up to one year.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Biodegradação Ambiental , Eliminação de Resíduos/métodos , Temperatura , Instalações de Eliminação de Resíduos
14.
Anat Rec (Hoboken) ; 305(7): 1739-1786, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34652885

RESUMO

Amblyrhynchus cristatus, the marine iguana, is unique among the ~7,000 species of living limbed lizards as it has successfully evolved adaptations that allow it to live in both terrestrial and marine environments. This species is endemic to the Galápagos Archipelago and has evolved a specialized feeding behavior, consuming primarily the algae that grow on the rocky seafloor. The intriguing questions arising around the evolution of the marine iguana concerns the use of exaptations of terrestrial features for aquatic and specifically marine adaptations. However, the lack of fundamental information about its anatomy currently prevents us from understanding how it became adapted to such a peculiar lifestyle in comparison to all other iguanids. The goal of this study is to provide the first ever description of the skull, mandible, and hyoid of Amblyrhynchus. We examined several specimens of marine iguana, including skeletal, wet, and ct-scanned material, and individuals at different ontogenetic stages. We also analyzed specimens of all other modern iguanid genera (Conolophus, Iguana, Ctenosaura, Cyclura, Dipsosaurus, Brachylophus, Sauromalus) in order to make comparisons between Amblyrhynchus and its closest relatives. We were able to identify several autapomorphic features that distinguish the marine iguana from all other iguanids. These unique morphologies are mostly associated with the modified configuration of the snout (nasal chamber), increased muscle attachments in the temporal-postorbital region of the skull, and dentition. Since Amblyrhynchus is the only nonophidian squamate currently able to exploit the ocean at least for some vital functions (i.e., feeding), we used comparisons to fossil marine lizards (e.g., mosasaurids) to discuss some of these unique traits. The new cranial features described for Amblyrhynchus may represent a source of novel morphological characters for use in future phylogenetic analyses of iguanian (or squamate) relationships, which will then serve as the foundation for the exploration of evolutionary patterns and processes that led to the development of such unique adaptations.


Assuntos
Osso Hioide , Iguanas , Mandíbula , Crânio , Animais , Humanos , Osso Hioide/anatomia & histologia , Iguanas/fisiologia , Lagartos/fisiologia , Mandíbula/anatomia & histologia , Osteologia , Filogenia , Crânio/anatomia & histologia
15.
Mol Ther Methods Clin Dev ; 23: 128-134, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703836

RESUMO

Transformative results of adeno-associated virus (AAV) gene therapy in patients with spinal muscular atrophy and Leber's congenital amaurosis led to approval of the first two AAV products in the United States to treat these diseases. These extraordinary results led to a dramatic increase in the number and type of AAV gene-therapy programs. However, the field lacks non-invasive means to assess levels and duration of therapeutic protein function in patients. Here, we describe a new magnetic resonance imaging (MRI) technology for real-time reporting of gene-therapy products in the living animal in the form of an MRI probe that is activated in the presence of therapeutic protein expression. For the first time, we show reliable tracking of enzyme expression after a now in-human clinical trial AAV gene therapy (ClinicalTrials.gov: NTC03952637) encoding lysosomal acid beta-galactosidase (ßgal) using a self-immolative ßgal-responsive MRI probe. MRI enhancement in AAV-treated enzyme-deficient mice (GLB-1-/-) correlates with ßgal activity in central nervous system and peripheral organs after intracranial or intravenous AAV gene therapy, respectively. With >1,800 gene therapies in phase I/II clinical trials (ClinicalTrials.gov), development of a non-invasive method to track gene expression over time in patients is crucial to the future of the gene-therapy field.

16.
Proc Biol Sci ; 288(1956): 20211391, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375553

RESUMO

Snake fangs are an iconic exemplar of a complex adaptation, but despite striking developmental and morphological similarities, they probably evolved independently in several lineages of venomous snakes. How snakes could, uniquely among vertebrates, repeatedly evolve their complex venom delivery apparatus is an intriguing question. Here we shed light on the repeated evolution of snake venom fangs using histology, high-resolution computed tomography (microCT) and biomechanical modelling. Our examination of venomous and non-venomous species reveals that most snakes have dentine infoldings at the bases of their teeth, known as plicidentine, and that in venomous species, one of these infoldings was repurposed to form a longitudinal groove for venom delivery. Like plicidentine, venom grooves originate from infoldings of the developing dental epithelium prior to the formation of the tooth hard tissues. Derivation of the venom groove from a large plicidentine fold that develops early in tooth ontogeny reveals how snake venom fangs could originate repeatedly through the co-option of a pre-existing dental feature even without close association to a venom duct. We also show that, contrary to previous assumptions, dentine infoldings do not improve compression or bending resistance of snake teeth during biting; plicidentine may instead have a role in tooth attachment.


Assuntos
Mordeduras e Picadas , Dente , Animais , Epitélio , Venenos de Serpentes , Serpentes
17.
Psychiatry Res ; 303: 114094, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34274904

RESUMO

Despite impulsivity being included as scoring criteria within several measures of youth psychopathic traits, the relationship between psychopathic traits and dimensions of impulsivity among high-risk youth is not well-understood. Here we assessed psychopathic traits via total, factor, and facet scores from the Psychopathy Checklist: Youth Version (PCL:YV) and impulsivity through total, three-factor, and six-factor model scores from the Barratt Impulsiveness Scale (BIS-11) in incarcerated male youth offenders. Correlational analyses indicated PCL:YV total, Factor 2, Facet 3, and Facet 4 scores were significantly positively correlated with BIS-11 total scores. Additionally, psychopathy scores were significantly positively correlated with specific scores from the three-factor model of the BIS-11 (e.g. Motor and Non-Planning Impulsivity scores) and the six-factor model of the BIS-11 (e.g., Attention, Self-Control, and Cognitive Complexity Impulsivity scores). Secondary analyses suggest that participants who had previously committed homicide scored higher on lifestyle/antisocial psychopathic traits and specific dimensions of impulsivity (e.g., BIS-11 Non-Planning and Self-Control Impulsivity factor scores) compared to youth who had not previously committed homicide. Our results improve our understanding of the specific forms of impulsivity significantly correlated with youth psychopathic traits and how specific factors underlying both constructs potentially characterize youth associated with severe forms of antisocial behavior.


Assuntos
Criminosos , Prisioneiros , Adolescente , Transtorno da Personalidade Antissocial , Homicídio , Humanos , Comportamento Impulsivo , Masculino
19.
Anat Rec (Hoboken) ; 304(10): 2303-2351, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33871920

RESUMO

Snakes-a subset of lizards-have traditionally been divided into two major groups based on feeding mechanics: "macrostomy," involving the ingestion of proportionally large prey items; and "microstomy," the lack of this ability. "Microstomy"-considered present in scolecophidian and early-diverging alethinophidian snakes-is generally viewed as a symplesiomorphy shared with non-snake lizards. However, this perspective of "microstomy" as plesiomorphic and morphologically homogenous fails to recognize the complexity of this condition and its evolution across "microstomatan" squamates. To challenge this problematic paradigm, we formalize a new framework for conceptualizing and testing the homology of overall character complexes, or "morphotypes," which underlies our re-assessment of "microstomy." Using micro-computed tomography (micro-CT) scans, we analyze the morphology of the jaws and suspensorium across purported "microstomatan" squamates (scolecophidians, early-diverging alethinophidians, and non-snake lizards) and demonstrate that key components of the jaw complex are not homologous at the level of primary character state identity across these taxa. Therefore, rather than treating "microstomy" as a uniform condition, we instead propose that non-snake lizards, early-diverging alethinophidians, anomalepidids, leptotyphlopids, and typhlopoids each exhibit a unique and nonhomologous jaw morphotype: "minimal-kinesis microstomy," "snout-shifting," "axle-brace maxillary raking," "mandibular raking," and "single-axle maxillary raking," respectively. The lack of synapomorphy among scolecophidians is inconsistent with the notion of scolecophidians representing an ancestral snake condition, and instead reflects a hypothesis of the independent evolution of fossoriality, miniaturization, and "microstomy" in each scolecophidian lineage. We ultimately emphasize that a rigorous approach to comparative anatomy is necessary in constructing evolutionary hypotheses that accurately reflect biological reality.


Assuntos
Anatomia Comparada , Microtomografia por Raio-X , Formação de Conceito
20.
J Anat ; 238(1): 146-172, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815172

RESUMO

Comparative osteological analyses of extant organisms provide key insight into major evolutionary transitions and phylogenetic hypotheses. This is especially true for snakes, given their unique morphology relative to other squamates and the persistent controversy regarding their evolutionary origins. However, the osteology of several major snake groups remains undescribed, thus hindering efforts to accurately reconstruct the phylogeny of snakes. One such group is the Atractaspididae, a family of fossorial colubroids. We herein present the first detailed description of the atractaspidid skull, based on fully segmented micro-computed tomography (micro-CT) scans of Atractaspis irregularis. The skull of Atractaspis presents a highly unique morphology influenced by both fossoriality and paedomorphosis. This paedomorphosis is especially evident in the jaws, palate, and suspensorium, the major elements associated with macrostomy (large-gaped feeding in snakes). Comparison to scolecophidians-a group of blind, fossorial, miniaturized snakes-in turn sheds light on current hypotheses of snake phylogeny. Features of both the naso-frontal joint and the morphofunctional system related to macrostomy refute the traditional notion that scolecophidians are fundamentally different from alethinophidians (all other extant snakes). Instead, these features support the controversial hypothesis of scolecophidians as "regressed alethinophidians," in contrast to their traditional placement as the earliest-diverging snake lineage. We propose that Atractaspis and scolecophidians fall along a morphological continuum, characterized by differing degrees of paedomorphosis. Altogether, a combination of heterochrony and miniaturization provides a mechanism for the derivation of the scolecophidian skull from an ancestral fossorial alethinophidian morphotype, exemplified by the nonminiaturized and less extreme paedomorph Atractaspis.


Assuntos
Evolução Biológica , Arcada Osseodentária/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Serpentes/anatomia & histologia , Animais , Fósseis , Arcada Osseodentária/diagnóstico por imagem , Crânio/diagnóstico por imagem , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...