Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765550

RESUMO

In this first analysis, samples from 23 BC survivors (group 1) and 291 healthy female controls (group 2) were characterised through the V3 and V4 regions that encode the "16S rRNA" gene of each bacteria. The samples were sequenced by next-generation sequencing (NGS), and the taxonomy was identified by resorting to Kraken2 and improved with Bracken, using a curated database called 'GutHealth_DB'. The α and ß-diversity analyses were used to determine the richness and evenness of the gut microbiota. A non-parametric Mann-Whitney U test was applied to assess differential abundance between both groups. The Firmicutes/Bacteroidetes (F/B) ratio was calculated using a Kruskal-Wallis chi-squared test. The α-diversity was significantly higher in group 1 (p = 0.28 × 10-12 for the Chao index and p = 1.64 × 10-12 for the ACE index). The Shannon index, a marker of richness and evenness, was not statistically different between the two groups (p = 0.72). The microbiota composition was different between the two groups: a null hypothesis was rejected for PERMANOVA (p = 9.99 × 10-5) and Anosim (p = 0.04) and was not rejected for ß-dispersion (p = 0.158), using Unifrac weighted distance. The relative abundance of 14 phyla, 29 classes, 25 orders, 64 families, 116 genera, and 74 species differed significantly between both groups. The F/B ratio was significantly lower in group 1 than in group 2, p < 0.001. Our study allowed us to observe significant taxonomic disparities in the two groups by testing the differences between BC survivors and healthy controls. Additional studies are needed to clarify the involved mechanisms and explore the relationship between microbiota and BC survivorship.

2.
Cancers (Basel) ; 14(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35954474

RESUMO

The tumour microenvironment (TME) comprises a complex ecosystem of different cell types, including immune cells, cells of the vasculature and lymphatic system, cancer-associated fibroblasts, pericytes, and adipocytes. Cancer proliferation, invasion, metastasis, drug resistance and immune escape are all influenced by the dynamic interaction between cancer cells and TME. Microbes, such as bacteria, fungi, viruses, archaea and protists, found within tumour tissues, constitute the intratumour microbiota, which is tumour type-specific and distinct among patients with different clinical outcomes. Growing evidence reveals a significant relevance of local microbiota in the colon, liver, breast, lung, oral cavity and pancreas carcinogenesis. Moreover, there is a growing interest in the tumour immune microenvironment (TIME) pointed out in several cross-sectional studies on the correlation between microbiota and TME. It is now known that microorganisms have the capacity to change the density and function of anticancer and suppressive immune cells, enabling the promotion of an inflammatory environment. As immunotherapy (such as immune checkpoint inhibitors) is becoming a promising therapy using TIME as a therapeutic target, the analysis and comprehension of local microbiota and its modulating strategies can help improve cancer treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA