Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Crit Care ; 28(1): 164, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745253

RESUMO

BACKGROUND: Hypoinflammatory and hyperinflammatory phenotypes have been identified in both Acute Respiratory Distress Syndrome (ARDS) and sepsis. Attributable mortality of ARDS in each phenotype of sepsis is yet to be determined. We aimed to estimate the population attributable fraction of death from ARDS (PAFARDS) in hypoinflammatory and hyperinflammatory sepsis, and to determine the primary cause of death within each phenotype. METHODS: We studied 1737 patients with sepsis from two prospective cohorts. Patients were previously assigned to the hyperinflammatory or hypoinflammatory phenotype using latent class analysis. The PAFARDS in patients with sepsis was estimated separately in the hypo and hyperinflammatory phenotypes. Organ dysfunction, severe comorbidities, and withdrawal of life support were abstracted from the medical record in a subset of patients from the EARLI cohort who died (n = 130/179). Primary cause of death was defined as the organ system that most directly contributed to death or withdrawal of life support. RESULTS: The PAFARDS was 19% (95%CI 10,28%) in hypoinflammatory sepsis and, 14% (95%CI 6,20%) in hyperinflammatory sepsis. Cause of death differed between the two phenotypes (p < 0.001). Respiratory failure was the most common cause of death in hypoinflammatory sepsis, whereas circulatory shock was the most common cause in hyperinflammatory sepsis. Death with severe underlying comorbidities was more frequent in hypoinflammatory sepsis (81% vs. 67%, p = 0.004). CONCLUSIONS: The PAFARDS is modest in both phenotypes whereas primary cause of death among patients with sepsis differed substantially by phenotype. This study identifies challenges in powering future clinical trials to detect changes in mortality outcomes among patients with sepsis and ARDS.


Assuntos
Fenótipo , Síndrome do Desconforto Respiratório , Sepse , Humanos , Sepse/mortalidade , Sepse/complicações , Sepse/fisiopatologia , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Causas de Morte/tendências , Estudos de Coortes , Inflamação
3.
Crit Care ; 28(1): 132, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649920

RESUMO

BACKGROUND: Rapidly improving acute respiratory distress syndrome (RIARDS) is an increasingly appreciated subgroup of ARDS in which hypoxemia improves within 24 h after initiation of mechanical ventilation. Detailed clinical and biological features of RIARDS have not been clearly defined, and it is unknown whether RIARDS is associated with the hypoinflammatory or hyperinflammatory phenotype of ARDS. The purpose of this study was to define the clinical and biological features of RIARDS and its association with inflammatory subphenotypes. METHODS: We analyzed data from 215 patients who met Berlin criteria for ARDS (endotracheally intubated) and were enrolled in a prospective observational cohort conducted at two sites, one tertiary care center and one urban safety net hospital. RIARDS was defined according to previous studies as improvement of hypoxemia defined as (i) PaO2:FiO2 > 300 or (ii) SpO2: FiO2 > 315 on the day following diagnosis of ARDS (day 2) or (iii) unassisted breathing by day 2 and for the next 48 h (defined as absence of endotracheal intubation on day 2 through day 4). Plasma biomarkers were measured on samples collected on the day of study enrollment, and ARDS phenotypes were allocated as previously described. RESULTS: RIARDS accounted for 21% of all ARDS participants. Patients with RIARDS had better clinical outcomes compared to those with persistent ARDS, with lower hospital mortality (13% vs. 57%; p value < 0.001) and more ICU-free days (median 24 vs. 0; p value < 0.001). Plasma levels of interleukin-6, interleukin-8, and plasminogen activator inhibitor-1 were significantly lower among patients with RIARDS. The hypoinflammatory phenotype of ARDS was more common among patients with RIARDS (78% vs. 51% in persistent ARDS; p value = 0.001). CONCLUSIONS: This study identifies a high prevalence of RIARDS in a multicenter observational cohort and confirms the more benign clinical course of these patients. We report the novel finding that RIARDS is characterized by lower concentrations of plasma biomarkers of inflammation compared to persistent ARDS, and that hypoinflammatory ARDS is more prevalent among patients with RIARDS. Identification and exclusion of RIARDS could potentially improve prognostic and predictive enrichment in clinical trials.


Assuntos
Biomarcadores , Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Biomarcadores/sangue , Biomarcadores/análise , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Adulto , Estudos de Coortes , Hipóxia/sangue
4.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630846

RESUMO

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


Assuntos
COVID-19 , Humanos , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , SARS-CoV-2 , Estudos Prospectivos , Multiômica , Quimiocinas
5.
Artigo em Inglês | MEDLINE | ID: mdl-38687499

RESUMO

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. In order to impact clinical care, identified subpopulations must do more than differentiate prognosis. They must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

6.
Sci Rep ; 14(1): 6234, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485953

RESUMO

Sepsis is a heterogeneous syndrome and phenotypes have been proposed using clinical data. Less is known about the contribution of protein biomarkers to clinical sepsis phenotypes and their importance for treatment effects in randomized trials of resuscitation. The objective is to use both clinical and biomarker data in the Protocol-Based Care for Early Septic Shock (ProCESS) randomized trial to determine sepsis phenotypes and to test for heterogeneity of treatment effect by phenotype comparing usual care to protocolized early, goal-directed therapy(EGDT). In this secondary analysis of a subset of patients with biomarker sampling in the ProCESS trial (n = 543), we identified sepsis phenotypes prior to randomization using latent class analysis of 20 clinical and biomarker variables. Logistic regression was used to test for interaction between phenotype and treatment arm for 60-day inpatient mortality. Among 543 patients with severe sepsis or septic shock in the ProCESS trial, a 2-class model best fit the data (p = 0.01). Phenotype 1 (n = 66, 12%) had increased IL-6, ICAM, and total bilirubin and decreased platelets compared to phenotype 2 (n = 477, 88%, p < 0.01 for all). Phenotype 1 had greater 60-day inpatient mortality compared to Phenotype 2 (41% vs 16%; p < 0.01). Treatment with EGDT was associated with worse 60-day inpatient mortality compared to usual care (58% vs. 23%) in Phenotype 1 only (p-value for interaction = 0.05). The 60-day inpatient mortality was similar comparing EGDT to usual care in Phenotype 2 (16% vs. 17%). We identified 2 sepsis phenotypes using latent class analysis of clinical and protein biomarker data at randomization in the ProCESS trial. Phenotype 1 had increased inflammation, organ dysfunction and worse clinical outcomes compared to phenotype 2. Response to EGDT versus usual care differed by phenotype.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/diagnóstico , Choque Séptico/terapia , Sepse/diagnóstico , Sepse/terapia , Biomarcadores , Fenótipo , Protocolos Clínicos
7.
Res Sq ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38464245

RESUMO

Background: Streptococcus pneumoniae is the most common bacterial cause of community acquired pneumonia and the acute respiratory distress syndrome (ARDS). Some clinical trials have demonstrated a beneficial effect of corticosteroid therapy in community acquired pneumonia, COVID-19, and ARDS, but the mechanisms of this benefit remain unclear. The objective of this study was to investigate the effects of corticosteroids on the pulmonary biology of pneumococcal pneumonia in an observational cohort of mechanically ventilated patients and in a mouse model of bacterial pneumonia with Streptococcus pneumoniae. Methods: We studied gene expression with lower respiratory tract transcriptomes from a cohort of mechanically ventilated patients and in mice. We also carried out comprehensive physiologic, biochemical, and histological analyses in mice to identify the mechanisms of lung injury in Streptococcus pneumoniae with and without adjunctive steroid therapy. Results: Transcriptomic analysis identified pleiotropic effects of steroid therapy on the lower respiratory tract in critically ill patients with pneumococcal pneumonia, findings that were reproducible in mice. In mice with pneumonia, dexamethasone in combination with ceftriaxone reduced (1) pulmonary edema formation, (2) alveolar protein permeability, (3) proinflammatory cytokine release, (4) histopathologic lung injury score, and (5) hypoxemia but did not increase bacterial burden. Conclusions: The gene expression studies in patients and in the mice support the clinical relevance of the mouse studies, which replicate several features of pneumococcal pneumonia and steroid therapy in humans. In combination with appropriate antibiotic therapy in mice, treatment of pneumococcal pneumonia with steroid therapy reduced hypoxemia, pulmonary edema, lung permeability, and histologic criteria of lung injury, and also altered inflammatory responses at the protein and gene expression level. The results from these studies provide evidence for the mechanisms that may explain the beneficial effects of glucocorticoid therapy in patients with community acquired pneumonia from Streptococcus Pneumoniae.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38548690

RESUMO

INTRODUCTION: Smoking is a public health threat due to its well described link to increased oxidative stress-related diseases including peripheral vascular disease and coronary artery disease. Tobacco use has been linked to risk of inpatient trauma morbidity including acute respiratory distress syndrome, however its mechanistic effect on comprehensive metabolic heterogeneity has yet to be examined. METHODS: Plasma was obtained on arrival from injured patients at a Level 1 Trauma Center and analyzed with modern mass spectrometry-based metabolomics. Patients were stratified by non-smoker, passive smoker and active smoker by lower, inter-quartile and upper quartile ranges of cotinine intensity peaks. Patients were sub-stratified by High Injury/High Shock (Injury Severity Score ≥ 15, Base Excess<-6) and compared to healthy controls. P-value <0.05 following FDR correction of t-test was considered significant. RESULTS: 48 patients with High Injury/High Shock (7 (15%) non-smokers, 25 (52%) passive smokers and 16 (33%) active smokers) and 95 healthy patients who served as controls (30 (32%) non-smokers, 43 (45%) passive smokers and 22 (23%) active smokers) were included. Elevated metabolites in our controls who were active smokers include enrichment in chronic inflammatory and oxidative processes. Elevated metabolites in active smokers in high injury/high shock include enrichment in the malate-aspartate shuttle, tyrosine metabolism, carnitine synthesis, and oxidation of very long-chain fatty acids. CONCLUSIONS: Smoking promotes a state of oxidative stress leading to mitochondrial dysfunction which is additive to the inflammatory milieu of trauma. Smoking is associated with impaired mitochondrial substrate utilization of long-chain fatty acids, aspartate and tyrosine all of which accentuate oxidative stress following injury. This altered expression represents an ideal target for therapies to reduce oxidative damage toward the goal of personalized treatment of trauma patients. LEVEL OF EVIDENCE: Level III, Prognostic/Epidemiological.

10.
Crit Care ; 28(1): 56, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383504

RESUMO

BACKGROUND: Despite evidence associating inflammatory biomarkers with worse outcomes in hospitalized adults with COVID-19, trials of immunomodulatory therapies have met with mixed results, likely due in part to biological heterogeneity of participants. Latent class analysis (LCA) of clinical and protein biomarker data has identified two subtypes of non-COVID acute respiratory distress syndrome (ARDS) with different clinical outcomes and treatment responses. We studied biological heterogeneity and clinical outcomes in a multi-institutional platform randomized controlled trial of adults with severe COVID-19 hypoxemic respiratory failure (I-SPY COVID). METHODS: Clinical and plasma protein biomarker data were analyzed from 400 trial participants enrolled from September 2020 until October 2021 with severe COVID-19 requiring ≥ 6 L/min supplemental oxygen. Seventeen hypothesis-directed protein biomarkers were measured at enrollment using multiplex Luminex panels or single analyte enzyme linked immunoassay methods (ELISA). Biomarkers and clinical variables were used to test for latent subtypes and longitudinal biomarker changes by subtype were explored. A validated parsimonious model using interleukin-8, bicarbonate, and protein C was used for comparison with non-COVID hyper- and hypo-inflammatory ARDS subtypes. RESULTS: Average participant age was 60 ± 14 years; 67% were male, and 28-day mortality was 25%. At trial enrollment, 85% of participants required high flow oxygen or non-invasive ventilation, and 97% were receiving dexamethasone. Several biomarkers of inflammation (IL-6, IL-8, IL-10, sTNFR-1, TREM-1), epithelial injury (sRAGE), and endothelial injury (Ang-1, thrombomodulin) were associated with 28- and 60-day mortality. Two latent subtypes were identified. Subtype 2 (27% of participants) was characterized by persistent derangements in biomarkers of inflammation, endothelial and epithelial injury, and disordered coagulation and had twice the mortality rate compared with Subtype 1. Only one person was classified as hyper-inflammatory using the previously validated non-COVID ARDS model. CONCLUSIONS: We discovered evidence of two novel biological subtypes of severe COVID-19 with significantly different clinical outcomes. These subtypes differed from previously established hyper- and hypo-inflammatory non-COVID subtypes of ARDS. Biological heterogeneity may explain inconsistent findings from trials of hospitalized patients with COVID-19 and guide treatment approaches.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , SARS-CoV-2 , Inflamação , Síndrome do Desconforto Respiratório/terapia , Oxigênio , Insuficiência Respiratória/terapia , Biomarcadores
11.
Am J Respir Crit Care Med ; 209(7): 816-828, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345571

RESUMO

Rationale: Two molecular phenotypes have been identified in acute respiratory distress syndrome (ARDS). In the ROSE (Reevaluation of Systemic Early Neuromuscular Blockade) trial of cisatracurium in moderate to severe ARDS, we addressed three unanswered questions: 1) Do the same phenotypes emerge in a more severe ARDS cohort with earlier recruitment; 2) Do phenotypes respond differently to neuromuscular blockade? and 3) What biological pathways most differentiate inflammatory phenotypes?Methods: We performed latent class analysis in ROSE using preenrollment clinical and protein biomarkers. In a subset of patients (n = 134), we sequenced whole-blood RNA using enrollment and Day 2 samples and performed differential gene expression and pathway analyses. Informed by the differential gene expression analysis, we measured additional plasma proteins and evaluated their abundance relative to gene expression amounts.Measurements and Main Results: In ROSE, we identified the hypoinflammatory (60.4%) and hyperinflammatory (39.6%) phenotypes with similar biological and clinical characteristics as prior studies, including higher mortality at Day 90 for the hyperinflammatory phenotype (30.3% vs. 61.6%; P < 0.0001). We observed no treatment interaction between the phenotypes and randomized groups for mortality. The hyperinflammatory phenotype was enriched for genes associated with innate immune response, tissue remodeling, and zinc metabolism at Day 0 and collagen synthesis and neutrophil degranulation at Day 2. Longitudinal changes in gene expression patterns differed dependent on survivorship. For most highly expressed genes, we observed correlations with their corresponding plasma proteins' abundance. However, for the class-defining plasma proteins in the latent class analysis, no correlation was observed with their corresponding genes' expression.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have different clinical, protein, and dynamic transcriptional characteristics. These findings support the clinical and biological potential of molecular phenotypes to advance precision care in ARDS.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Fenótipo , Biomarcadores , Proteínas Sanguíneas/genética , Expressão Gênica
13.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405760

RESUMO

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-γ, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.

14.
Nat Commun ; 15(1): 92, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168095

RESUMO

Antimicrobial resistant lower respiratory tract infections are an increasing public health threat and an important cause of global mortality. The lung microbiome can influence susceptibility of respiratory tract infections and represents an important reservoir for exchange of antimicrobial resistance genes. Studies of the gut microbiome have found an association between age and increasing antimicrobial resistance gene burden, however, corollary studies in the lung microbiome remain absent. We performed an observational study of children and adults with acute respiratory failure admitted to the intensive care unit. From tracheal aspirate RNA sequencing data, we evaluated age-related differences in detectable antimicrobial resistance gene expression in the lung microbiome. Using a multivariable logistic regression model, we find that detection of antimicrobial resistance gene expression was significantly higher in adults compared with children after adjusting for demographic and clinical characteristics. This association remained significant after additionally adjusting for lung bacterial microbiome characteristics, and when modeling age as a continuous variable. The proportion of adults expressing beta-lactam, aminoglycoside, and tetracycline antimicrobial resistance genes was higher compared to children. Together, these findings shape our understanding of the lung resistome in critically ill patients across the lifespan, which may have implications for clinical management and global public health.


Assuntos
Microbiota , Infecções Respiratórias , Adulto , Criança , Humanos , Estado Terminal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbiota/genética , Pulmão , Resistência Microbiana a Medicamentos/genética , Infecções Respiratórias/tratamento farmacológico
15.
Am J Respir Crit Care Med ; 209(8): 973-986, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240721

RESUMO

Rationale: The plasma lipidome has the potential to reflect many facets of the host status during severe infection. Previous work is limited to specific lipid groups or was focused on lipids as prognosticators.Objectives: To map the plasma lipidome during sepsis due to community-acquired pneumonia (CAP) and determine the disease specificity and associations with clinical features.Methods: We analyzed 1,833 lipid species across 33 classes in 169 patients admitted to the ICU with sepsis due to CAP, 51 noninfected ICU patients, and 48 outpatient controls. In a paired analysis, we reanalyzed patients still in the ICU 4 days after admission (n = 82).Measurements and Main Results: A total of 58% of plasma lipids were significantly lower in patients with CAP-attributable sepsis compared with outpatient controls (6% higher, 36% not different). We found strong lipid class-specific associations with disease severity, validated across two external cohorts, and inflammatory biomarkers, in which triacylglycerols, cholesterol esters, and lysophospholipids exhibited the strongest associations. A total of 36% of lipids increased over time, and stratification by survival revealed diverging lipid recovery, which was confirmed in an external cohort; specifically, a 10% increase in cholesterol ester levels was related to a lower odds ratio (0.84; P = 0.006) for 30-day mortality (absolute mortality, 18 of 82). Comparison with noninfected ICU patients delineated a substantial common illness response (57.5%) and a distinct lipidomic signal for patients with CAP-attributable sepsis (37%).Conclusions: Patients with sepsis due to CAP exhibit a time-dependent and partially disease-specific shift in their plasma lipidome that correlates with disease severity and systemic inflammation and is associated with higher mortality.


Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Sepse , Humanos , Lipidômica , Pneumonia/complicações , Sepse/complicações , Lipídeos , Índice de Gravidade de Doença , Unidades de Terapia Intensiva
16.
Nat Commun ; 15(1): 216, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172101

RESUMO

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.


Assuntos
Líquidos Corporais , COVID-19 , Feminino , Humanos , SARS-CoV-2 , COVID-19/complicações , Linfócitos B , Progressão da Doença , Fenótipo
17.
Am J Respir Crit Care Med ; 209(7): 805-815, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190719

RESUMO

Rationale: Two molecular phenotypes of sepsis and acute respiratory distress syndrome, termed hyperinflammatory and hypoinflammatory, have been consistently identified by latent class analysis in numerous cohorts, with widely divergent clinical outcomes and differential responses to some treatments; however, the key biological differences between these phenotypes remain poorly understood.Objectives: We used host and microbe metagenomic sequencing data from blood to deepen our understanding of biological differences between latent class analysis-derived phenotypes and to assess concordance between the latent class analysis-derived phenotypes and phenotypes reported by other investigative groups (e.g., Sepsis Response Signature [SRS1-2], molecular diagnosis and risk stratification of sepsis [MARS1-4], reactive and uninflamed).Methods: We analyzed data from 113 patients with hypoinflammatory sepsis and 76 patients with hyperinflammatory sepsis enrolled in a two-hospital prospective cohort study. Molecular phenotypes had been previously assigned using latent class analysis.Measurements and Main Results: The hyperinflammatory and hypoinflammatory phenotypes of sepsis had distinct gene expression signatures, with 5,755 genes (31%) differentially expressed. The hyperinflammatory phenotype was associated with elevated expression of innate immune response genes, whereas the hypoinflammatory phenotype was associated with elevated expression of adaptive immune response genes and, notably, T cell response genes. Plasma metagenomic analysis identified differences in prevalence of bacteremia, bacterial DNA abundance, and composition between the phenotypes, with an increased presence and abundance of Enterobacteriaceae in the hyperinflammatory phenotype. Significant overlap was observed between these phenotypes and previously identified transcriptional subtypes of acute respiratory distress syndrome (reactive and uninflamed) and sepsis (SRS1-2). Analysis of data from the VANISH trial indicated that corticosteroids might have a detrimental effect in patients with the hypoinflammatory phenotype.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have distinct transcriptional and metagenomic features that could be leveraged for precision treatment strategies.


Assuntos
Síndrome do Desconforto Respiratório , Sepse , Humanos , Estudos Prospectivos , Estado Terminal , Fenótipo , Sepse/genética , Sepse/complicações , Síndrome do Desconforto Respiratório/complicações
20.
Am J Respir Crit Care Med ; 209(1): 37-47, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487152

RESUMO

Background: Since publication of the 2012 Berlin definition of acute respiratory distress syndrome (ARDS), several developments have supported the need for an expansion of the definition, including the use of high-flow nasal oxygen, the expansion of the use of pulse oximetry in place of arterial blood gases, the use of ultrasound for chest imaging, and the need for applicability in resource-limited settings. Methods: A consensus conference of 32 critical care ARDS experts was convened, had six virtual meetings (June 2021 to March 2022), and subsequently obtained input from members of several critical care societies. The goal was to develop a definition that would 1) identify patients with the currently accepted conceptual framework for ARDS, 2) facilitate rapid ARDS diagnosis for clinical care and research, 3) be applicable in resource-limited settings, 4) be useful for testing specific therapies, and 5) be practical for communication to patients and caregivers. Results: The committee made four main recommendations: 1) include high-flow nasal oxygen with a minimum flow rate of ⩾30 L/min; 2) use PaO2:FiO2 ⩽ 300 mm Hg or oxygen saturation as measured by pulse oximetry SpO2:FiO2 ⩽ 315 (if oxygen saturation as measured by pulse oximetry is ⩽97%) to identify hypoxemia; 3) retain bilateral opacities for imaging criteria but add ultrasound as an imaging modality, especially in resource-limited areas; and 4) in resource-limited settings, do not require positive end-expiratory pressure, oxygen flow rate, or specific respiratory support devices. Conclusions: We propose a new global definition of ARDS that builds on the Berlin definition. The recommendations also identify areas for future research, including the need for prospective assessments of the feasibility, reliability, and prognostic validity of the proposed global definition.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Oximetria , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...