Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 229(Supplement_1): S100-S111, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37941411

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) infection is the primary cause of lower respiratory tract infections in children <5 years of age. Monocytes, especially in the respiratory tract, are suggested to contribute to RSV pathology, but their role is incompletely understood. With transcriptomic profiling of blood and airway monocytes, we describe the role of monocytes in severe RSV infection. METHODS: Tracheobronchial aspirates and blood samples were collected from control patients (n = 9) and those infected with RSV (n = 14) who were admitted to the pediatric intensive care unit. Monocytes (CD14+) were sorted and analyzed by RNA sequencing for transcriptomic profiling. RESULTS: Peripheral blood and airway monocytes of patients with RSV demonstrated increased expression of antiviral and interferon-responsive genes as compared with controls. Cytokine signaling showed a shared response between blood and airway monocytes while displaying responses that were more pronounced according to the tissue of origin. Airway monocytes upregulated additional genes related to migration and inflammation. CONCLUSIONS: We found that the RSV-induced interferon response extends from the airways to the peripheral blood. Moreover, RSV induces a migration-promoting transcriptional program in monocytes. Unraveling the monocytic response and its role in the immune response to RSV infection could help the development of therapeutics to prevent severe disease.


Assuntos
Infecções por Vírus Respiratório Sincicial , Criança , Lactente , Humanos , Infecções por Vírus Respiratório Sincicial/genética , Monócitos , Sistema Respiratório , Perfilação da Expressão Gênica , Interferons , Fenótipo , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Clin Epigenetics ; 13(1): 61, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757590

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic disease of the cardiac muscle, frequently caused by mutations in MYBPC3. However, little is known about the upstream pathways and key regulators causing the disease. Therefore, we employed a multi-omics approach to study the pathomechanisms underlying HCM comparing patient hearts harboring MYBPC3 mutations to control hearts. RESULTS: Using H3K27ac ChIP-seq and RNA-seq we obtained 9310 differentially acetylated regions and 2033 differentially expressed genes, respectively, between 13 HCM and 10 control hearts. We obtained 441 differentially expressed proteins between 11 HCM and 8 control hearts using proteomics. By integrating multi-omics datasets, we identified a set of DNA regions and genes that differentiate HCM from control hearts and 53 protein-coding genes as the major contributors. This comprehensive analysis consistently points toward altered extracellular matrix formation, muscle contraction, and metabolism. Therefore, we studied enriched transcription factor (TF) binding motifs and identified 9 motif-encoded TFs, including KLF15, ETV4, AR, CLOCK, ETS2, GATA5, MEIS1, RXRA, and ZFX. Selected candidates were examined in stem cell-derived cardiomyocytes with and without mutated MYBPC3. Furthermore, we observed an abundance of acetylation signals and transcripts derived from cardiomyocytes compared to non-myocyte populations. CONCLUSIONS: By integrating histone acetylome, transcriptome, and proteome profiles, we identified major effector genes and protein networks that drive the pathological changes in HCM with mutated MYBPC3. Our work identifies 38 highly affected protein-coding genes as potential plasma HCM biomarkers and 9 TFs as potential upstream regulators of these pathomechanisms that may serve as possible therapeutic targets.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Metilação de DNA , Expressão Gênica , Genes Homeobox , Histonas/genética , Humanos , Mutação , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...