Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Work Expo Health ; 64(8): 852-865, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32469054

RESUMO

Detecting infectious aerosols is central for gauging and countering airborne threats. In this regard, the Coriolis® µ cyclonic air sampler is a practical, commercial collector that can be used with various analysis methods to monitor pathogens in air. However, information on how to operate this unit under optimal sampling and biosafety conditions is limited. We investigated Coriolis performance in aerosol dispersal experiments with polystyrene microspheres and Bacillus globigii spores. We report inconsistent sample recovery from the collector cone due to loss of material when sampling continuously for more than 30 min. Introducing a new collector cone every 10 min improved this shortcoming. Moreover, we found that several surfaces on the device become contaminated during sampling. Adapting a high efficiency particulate air-filter system to the Coriolis prevented contamination without altering collection efficiency or tactical deployment. A Coriolis modified with these operative and technical improvements was used to collect aerosols carrying microspheres released inside a Biosafety Level-3 laboratory during simulations of microbiological spills and aerosol dispersals. In summary, we provide operative and technical solutions to the Coriolis that optimize microbiological air sampling and improve biosafety.


Assuntos
Contenção de Riscos Biológicos , Aerossóis/análise , Poluentes Atmosféricos , Bacillus , Poeira , Humanos , Exposição Ocupacional/análise
2.
PLoS One ; 11(1): e0146658, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26807816

RESUMO

Knowledge of the airborne nature of respiratory disease transmission owes much to the pioneering experiments of Wells and Riley over half a century ago. However, the mechanical, physiological, and immunopathological processes which drive the production of infectious aerosols by a diseased host remain poorly understood. Similarly, very little is known about the specific physiological, metabolic and morphological adaptations which enable pathogens such as Mycobacterium tuberculosis (Mtb) to exit the infected host, survive exposure to the external environment during airborne carriage, and adopt a form that is able to enter the respiratory tract of a new host, avoiding innate immune and physical defenses to establish a nascent infection. As a first step towards addressing these fundamental knowledge gaps which are central to any efforts to interrupt disease transmission, we developed and characterized a small personal clean room comprising an array of sampling devices which enable isolation and representative sampling of airborne particles and organic matter from tuberculosis (TB) patients. The complete unit, termed the Respiratory Aerosol Sampling Chamber (RASC), is instrumented to provide real-time information about the particulate output of a single patient, and to capture samples via a suite of particulate impingers, impactors and filters. Applying the RASC in a clinical setting, we demonstrate that a combination of molecular and microbiological assays, as well as imaging by fluorescence and scanning electron microscopy, can be applied to investigate the identity, viability, and morphology of isolated aerosolized particles. Importantly, from a preliminary panel of active TB patients, we observed the real-time production of large numbers of airborne particles including Mtb, as confirmed by microbiological culture and polymerase chain reaction (PCR) genotyping. Moreover, direct imaging of captured samples revealed the presence of multiple rod-like Mtb organisms whose physical dimensions suggested the capacity for travel deep into the alveolar spaces of the human lung.


Assuntos
Aerossóis/análise , Mycobacterium tuberculosis , Tuberculose/transmissão , Humanos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...