Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 375(2084)2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27895261

RESUMO

The structures and photochemical behaviour of two new metal-organic frameworks (MOFs) are reported. Reaction of Re(2,2'-bipy-5,5'-dicarboxylic acid)(CO)3Cl or Mn(2,2'-bipy-5,5'-dicarboxylic acid)(CO)3Br with LiCl or LiBr, respectively, produces single crystals of {Li2(DMF)2 [(2,2'-bipy-5,5'-dicarboxylate)Re(CO)3Cl]}n ( RELI: ) or {Li2(DMF)2[(2,2'-bipy-5,5'-dicarboxylate)Mn(CO)3Br]}n ( MNLI: ). The structures formed by the two MOFs comprise one-dimensional chains of carboxylate-bridged Li(I) cations that are cross-linked by units of Re(2,2'-bipy-5,5'-dicarboxylate)(CO)3Cl ( RELI: ) or Mn(2,2'-bipy-5,5'- dicarboxylate)(CO)3Br ( MNLI: ). The photophysical and photochemical behaviour of both RELI: and MNLI: are probed. The rhenium-containing MOF, RELI: , exhibits luminescence and the excited state behaviour, as established by time-resolved infrared measurements, is closer in behaviour to that of unsubstituted [Re(bipy)(CO)3Cl] rather than a related MOF where the Li(I) cations are replaced by Mn(II) cations. These observations are further supported by density functional theory calculations. Upon excitation MNLI: forms a dicarbonyl species which rapidly recombines with the dissociated CO, in a fashion consistent with the majority of the photoejected CO not escaping the MOF channels.This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

2.
Dalton Trans ; 45(18): 7708-19, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27055102

RESUMO

A series of novel laterally anchoring tetrahydroquinoline derivatives have been synthesized and investigated for their use in NiO-based p-type dye-sensitized solar cells. The kinetics of charge injection and recombination at the NiO-dye interface for these dyes have been thoroughly investigated using picosecond transient absorption and time-resolved infrared measurements. It was revealed that despite the anchoring unit being electronically decoupled from the dye structure, charge injection occurred on a sub picosecond timescale. However, rapid recombination was also observed due to the close proximity of the electron acceptor on the dyes to the NiO surface, ultimately limiting the performance of the p-DSCs.

3.
Inorg Chem ; 55(2): 527-36, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26605700

RESUMO

The synthesis, photophysics, and photochemistry of a linked dyad ([Re]-[NiFe2]) containing an analogue ([NiFe2]) of the active site of [NiFe] hydrogenase, covalently bound to a Re-diimine photosensitizer ([Re]), are described. Following excitation, the mechanisms of electron transfer involving the [Re] and [NiFe2] centers and the resulting decomposition were investigated. Excitation of the [Re] center results in the population of a diimine-based metal-to-ligand charge transfer excited state. Reductive quenching by NEt3 produces the radically reduced form of [Re], [Re](-) (kq = 1.4 ± 0.1 × 10(7) M(-1) s(-1)). Once formed, [Re](-) reduces the [NiFe2] center to [NiFe2](-), and this reduction was followed using time-resolved infrared spectroscopy. The concentration dependence of the electron transfer rate constants suggests that both inter- and intramolecular electron transfer pathways are involved, and the rate constants for these processes have been estimated (kinter = 5.9 ± 0.7 × 10(8) M(-1) s(-1), kintra = 1.5 ± 0.1 × 10(5) s(-1)). For the analogous bimolecular system, only intermolecular electron transfer could be observed (kinter = 3.8 ± 0.5 × 10(9) M(-1) s(-1)). Fourier transform infrared spectroscopic studies confirms that decomposition of the dyad occurs upon prolonged photolysis, and this appears to be a major factor for the low activity of the system toward H2 production in acidic conditions.


Assuntos
Biomimética , Hidrogenase/síntese química , Fármacos Fotossensibilizantes/química , Rênio/química , Aminas/química , Eletroquímica , Hidrogenase/química , Oxirredução , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
4.
J Chem Phys ; 142(15): 154119, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25903878

RESUMO

In contrast to the ground state, the calculation of the infrared (IR) spectroscopy of molecular singlet excited states represents a substantial challenge. Here, we use the structural IR fingerprint of the singlet excited states of a range of coumarin dyes to assess the accuracy of density functional theory based methods for the calculation of excited state IR spectroscopy. It is shown that excited state Kohn-Sham density functional theory provides a high level of accuracy and represents an alternative approach to time-dependent density functional theory for simulating the IR spectroscopy of singlet excited states.

5.
Appl Spectrosc ; 69(5): 519-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25811673

RESUMO

The photochemistry and photophysics of metal carbonyl compounds (W(CO)6, Cp*Rh(CO)2 (Cp* = η(5)-C5Me5), and fac-[Re(CO)3(4,4'-bpy)2Br] [bpy = bipyridine]) have been examined on the nanosecond timescale using a time-resolved infrared spectrometer with an external cavity quantum cascade laser (QCL) as the infrared source. We show the photochemistry of W(CO)6 in alkane solution is easily monitored, and very sensitive measurements are possible with this approach, meaning it can monitor small transients with absorbance changes less than 10(-6) ΔOD. The C-H activation of Cp*Rh(CO)(C6H12) to form Cp*Rh(CO)(C6H11)H occurs within the first few tens of nanoseconds following photolysis, and we demonstrate that kinetics obtained following deconvolution are in excellent agreement with those measured using an ultrafast laser-based spectrometer. We also show that the high flux and tunability of QCLs makes them suited for solid-state and time-resolved measurements.

6.
Chem Sci ; 6(1): 418-424, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936300

RESUMO

Irradiation of CpMn(CO)3 in liquid ethane at 135 K at 355 nm yields a photoproduct that exhibits ν(CO) bands in the IR spectrum shifted to low wavenumber with respect to CpMn(CO)3 that are indicative of a Mn(i) dicarbonyl. Parallel experiments employing in situ irradiation within an NMR probe (133 K, 355 nm photolysis) reveal the 1H NMR signals of this product and confirm its formulation as the σ-ethane complex CpMn(CO)2(η2-C1-H-ethane). The resonance of its coordinated C-H group is observed at δ -5.84 and decays with lifetime of ca. 360 s. Analogous photolysis experiments in isopentane solution with IR detection produce CpMn(CO)2(η2-C-H-isopentane) with similar IR bands to those of CpMn(CO)2(η2-C-H-ethane). 1H NMR spectra of the same species were obtained by irradiation of CpMn(CO)3 in a 60 : 40 mixture of propane and isopentane; three isomers of CpMn(CO)2(η2-C-H-isopentane) were detected with coordination of manganese at the two inequivalent methyl positions and at the methylene group, respectively. The lifetimes of these isomers are ca. 380 ± 20 s at 135 K and do not vary significantly from each other. These σ-complexes of manganese are far more reactive than those of related CpRe(CO)2(alkane) complexes which are stable in solution at 170-180 K. The room temperature lifetimes of CpMn(CO)2(η2-C-H-ethane) and CpMn(CO)2(η2-C-H-isopentane), as determined by TRIR spectroscopy, are 2.0 ± 0.1 and 28 ± 1 µs, respectively.

7.
J Am Chem Soc ; 136(24): 8614-25, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24823385

RESUMO

Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = η(5)-C5H5 (Cp) or η(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the σ-complexes is faster than the C-H activation for this larger cycloalkane.

8.
Appl Spectrosc ; 68(3): 324-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24666949

RESUMO

The design for a new high-pressure-low-temperature infrared (IR) cell for performing experiments using conventional Fourier transform infrared or fast laser-based time-resolved infrared spectroscopy, in a range of solvents, is described. The design builds upon a commercially available compressor and cold end (Polycold PCC(®) and CryoTiger(®)), which enables almost vibration-free operation, ideal for use with sensitive instrumentation. The design of our cell and cryostat allows for the study of systems at temperatures from 77 to 310 K and at pressures up to 250 bar. The CaF2 windows pass light from the mid-IR to the ultraviolet (UV), enabling a number of experiments to be performed, such as Raman, UV-visible absorption spectroscopy, and time-resolved techniques where sample excitation/probing using continuous wave or pulsed lasers is required. We demonstrate the capabilities of this cell by detailing two different applications: (i) the reactivity of a range of Group V-VII organometallic alkane complexes using time-resolved spectroscopy on the millisecond timescale and (ii) the gas-to-liquid phase transition of CO2 at low temperature, which is applicable to measurements associated with transportation issues related to carbon capture and storage.

9.
Inorg Chem ; 53(5): 2606-12, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24512024

RESUMO

The mechanism and intermediates in the UV-light-initiated ligand rearrangement of fac-Re(diimine)(CO)3Cl to form the mer isomer, when incorporated into a 3D metal-organic framework (MOF), have been investigated. The structure hosting the rhenium diimine complex is a 3D network with the formula {Mn(DMF)2[LRe(CO)3Cl]}∞ (ReMn; DMF = N,N-dimethylformamide), where the diimine ligand L, 2,2'-bipyridine-5,5'-dicarboxylate, acts as a strut of the MOF. The incorporation of ReMn into a KBr disk allows spatial distribution of the mer-isomer photoproduct in the disk to be mapped and spectroscopically characterized by both Fourier transform infrared and Raman microscopy. Photoisomerization has been monitored by IR spectroscopy and proceeds via dissociation of a CO to form more than one dicarbonyl intermediate. The dicarbonyl species are stable in the solid state at 200 K. The photodissociated CO ligand appears to be trapped within the crystal lattice and, upon warming above 200 K, readily recombines with the dicarbonyl intermediates to form both the fac-Re(diimine)(CO)3Cl starting material and the mer-Re(diimine)(CO)3Cl photoproduct. Experiments over a range of temperatures (265-285 K) allow estimates of the activation enthalpy of recombination for each process of ca. 16 (±6) kJ mol(-1) (mer formation) and 23 (±4) kJ mol(-1) (fac formation) within the MOF. We have compared the photochemistry of the ReMn MOF with a related alkane-soluble Re(dnb)(CO)3Cl complex (dnb = 4,4'-dinonyl-2,2'-bipyridine). Time-resolved IR measurements clearly show that, in an alkane solution, the photoinduced dicarbonyl species again recombines with CO to both re-form the fac-isomer starting material and form the mer-isomer photoproduct. Density functional theory calculations of the possible dicarbonyl species aids the assignment of the experimental data in that the ν(CO) IR bands of the CO loss intermediate are, as expected, shifted to lower energy when the metal is bound to DMF rather than to an alkane and both solution data and calculations suggest that the ν(CO) band positions in the photoproduced dicarbonyl intermediates of ReMn are consistent with DMF binding.


Assuntos
Ácidos Carboxílicos/química , Iminas/química , Manganês/química , Metais/química , Compostos Organometálicos/química , Fotoquímica , Teoria Quântica , Rênio/química , Isomerismo , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Chem Commun (Camb) ; 50(40): 5258-60, 2014 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-24129545

RESUMO

The viability of applying bodipy sensitisers to NiO-based p-type dye-sensitised solar cells (p-DSCs) has been successfully demonstrated. The triphenylamine donor-bodipy acceptor design promotes a long-lived charge-separated state which is difficult to achieve with NiO-based devices. The current was above 3 mA cm(-2) and the IPCE was 28%.

11.
Inorg Chem ; 50(23): 11877-89, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22043811

RESUMO

The photochemistry and photophysics of the cationic molecular dyad, 5-{4-[rhenium(I)tricarbonylpicoline-4-methyl-2,2'-bipyridine-4'-carboxyamidyl]phenyl}-10,15,20-triphenylporphyrinatopalladium(II) ([Re(CO)(3)(Pic)Bpy-PdTPP][PF(6)]) have been investigated. The single crystal X-ray structure for the thiocyanate analogue, [Re(CO)(3)(NCS)Bpy-PdTPP], exhibits torsion angles of 69.1(9)°, 178.1(7)°, and 156.8(9)° between porphyrin plane, porphyrin-linked C(6)H(4) group, amide moiety, and Bpy, respectively. Steady-state photoexcitation (λ(ex) = 520 nm) of [Re(CO)(3)(Pic)Bpy-PdTPP][PF(6)] in dimethylformamide (DMF) results in substitution of Pic by bromide at the Re(I)Bpy core. When [Re(CO)(3)(Pic)Bpy-PdTPP][PF(6)] is employed as a photocatalyst for the reduction of CO(2) to CO in DMF/NEt(3) solution with λ(ex) > 420 nm, 2 turnovers (TNs) CO are formed after 4 h. If instead, a two-component mixture of PdTPP sensitizer and mononuclear [Re(CO)(3)(Pic)Bpy][PF(6)] catalyst is used, 3 TNs CO are formed. In each experiment however, CO only forms after a slight induction period and during the concurrent photoreduction of the sensitizer to a Pd(II) chlorin species. Palladium(II) meso-tetraphenylchlorin, the hydrogenated porphyrin analogue of PdTPP, has been synthesized independently and can be substituted for PdTPP in the two-component system with [Re(CO)(3)(Pic)Bpy][PF(6)], forming 9 TNs CO. An intramolecular electron transfer process for the dyad is supported by cyclic voltammetry and steady-state emission studies, from which the free energy change was calculated to be ΔG(ox)* = -0.08 eV. Electron transfer from Pd(II) porphyrin to Re(I) tricarbonyl bipyridine in [Re(CO)(3)(Pic)Bpy-PdTPP][PF(6)] was monitored using time-resolved infrared (TRIR) spectroscopy in the ν(CO) region on several time scales with excitation at 532 nm. Spectra were recorded in CH(2)Cl(2) with and without NEt(3). Picosecond TRIR spectroscopy shows rapid growth of bands assigned to the π-π* excited state (2029 cm(-1)) and to the charge-separated state (2008, 1908 cm(-1)); these bands decay and the parent recovers with lifetimes of 20-50 ps. Spectra recorded on longer time scales (ns, µs, and seconds) show the growth and decay of further species with ν(CO) bands indicative of electron transfer to Re(Bpy).

12.
J Am Chem Soc ; 133(7): 2303-10, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21280655

RESUMO

Manganese propane and manganese butane complexes derived from CpMn(CO)(3) were generated photochemically at 130-136 K with the alkane as solvent and characterized by FTIR spectroscopy and by (1)H NMR spectroscopy with in situ laser photolysis. Time-resolved IR spectroscopic measurements were performed at room temperature with the same laser wavelength. The ν(CO) bands in the IR spectra of the photoproducts in propane are shifted to low frequency with respect to CpMn(CO)(3), consistent with formation of CpMn(CO)(2)(propane). The (1)H NMR spectra conform to the criteria for alkane complexes: a high-field resonance for the η(2)-CH protons that shifts substantially on partial deuteration of the alkane and exhibits a coupling constant J(C-H) on (13)C-labeling of ca. 120 Hz. The NMR spectrum of each system exhibits two diagnostic product resonances in the high-field region for the η(2)-CH protons, corresponding to CpMn(CO)(2)(η(2)-C1-H-alkane) and CpMn(CO)(2)(η(2)-C2-H-alkane) isomers. Partial deuteration of the alkane at C1 results in characteristic strong isotopic perturbation of equilibrium of the η(2)-CH resonance of CpMn(CO)(2)(η(2)-C1-H-alkane). With propane-(13)C(1), the η(2)-CH resonance of CpMn(CO)(2)(η(2)-C1-H-alkane) isomer exhibits (13)C satellites with J(C-H) = 119 Hz. The corresponding resonance of CpMn(CO)(2)(η(2)-C2-H-alkane) is identified by use of propane-2,2-d(2). The lifetimes of the (η(2)-C1-H-alkane) isomers of the manganese complexes were determined by NMR spectroscopy as 22 ± 2 min at 134 K (propane) and 5.5 min at 136 K (butane). The corresponding spectra and lifetimes of the CpRe(CO)(2)(alkane) complexes were measured for reference (CpRe(CO)(2)(propane) lifetime ca. 60 min at 161 K; CpRe(CO)(2)(butane) 13 min at 171 K). The lifetimes determined by IR spectroscopy were similar to those determined by NMR spectroscopy, thereby supporting the assignments. These measurements extend the range of alkane complexes characterized by NMR spectroscopy from rhenium and rhodium derivatives to include less stable manganese derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...