Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
NMR Biomed ; 37(3): e5070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098204

RESUMO

Biophysical diffusion-weighted imaging (DWI) models are increasingly used in neuroscience to estimate the axonal water fraction ( f AW ), which in turn is key for noninvasive estimation of the axonal volume fraction ( f A ). These models require thorough validation by comparison with a reference method, for example, electron microscopy (EM). While EM studies often neglect the unmyelinated axons and solely report the fraction of myelinated axons, in DWI both myelinated and unmyelinated axons contribute to the DWI signal. However, DWI models often include simplifications, for example, the neglect of differences in the compartmental relaxation times or fixed diffusivities, which in turn might affect the estimation of f AW . We investigate whether linear calibration parameters (scaling and offset) can improve the comparability between EM- and DWI-based metrics of f A . To this end, we (a) used six DWI models based on the so-called standard model of white matter (WM), including two models with fixed compartmental diffusivities (e.g., neurite orientation dispersion and density imaging, NODDI) and four models that fitted the compartmental diffusivities (e.g., white matter tract integrity, WMTI), and (b) used a multimodal data set including ex vivo diffusion DWI and EM data in mice with a broad dynamic range of fibre volume metrics. We demonstrated that the offset is associated with the volume fraction of unmyelinated axons and the scaling factor is associated with different compartmental T 2 and can substantially enhance the comparability between EM- and DWI-based metrics of f A . We found that DWI models that fitted compartmental diffusivities provided the most accurate estimates of the EM-based f A . Finally, we introduced a more efficient hybrid calibration approach, where only the offset is estimated but the scaling is fixed to a theoretically predicted value. Using this approach, a similar one-to-one correspondence to EM was achieved for WMTI. The method presented can pave the way for use of validated DWI-based models in clinical research and neuroscience.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Camundongos , Animais , Axônios , Substância Branca/diagnóstico por imagem , Bainha de Mielina , Microscopia Eletrônica , Encéfalo/diagnóstico por imagem
2.
J Neurosci ; 43(47): 7946-7957, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739797

RESUMO

Perception has been proposed to result from the integration of feedforward sensory signals with internally generated feedback signals. Feedback signals are believed to play an important role in driving false percepts, that is, seeing things that are not actually there. Feedforward and feedback influences on perception can be studied using layer-specific fMRI, which we used here to interrogate neural activity underlying high-confidence false percepts while healthy human participants (N = 25, male and female) performed a perceptual orientation discrimination task. Auditory cues implicitly signaled the most likely upcoming orientation (referred to here as expectations). These expectations induced orientation-specific templates in the deep and superficial layers of V2, without affecting perception. In contrast, the orientation of falsely perceived stimuli with high confidence was reflected in the middle input layers of V2, suggesting a feedforward signal contributing to false percepts. The prevalence of high-confidence false percepts was related to everyday hallucination severity in a separate online sample (N = 100), suggesting a possible link with abnormal perceptual experiences. These results reveal a potential feedforward mechanism underlying false percepts, reflected by spontaneous stimulus-like activity in the input layers of the visual cortex, independent of top-down signals reflecting cued orientations.SIGNIFICANCE STATEMENT False percepts have been suggested to arise through excessive feedback signals. However, feedforward contributions to false percepts have remained largely understudied. Laminar fMRI has been shown to be useful in distinguishing feedforward from feedback activity as it allows the imaging of different cortical layers. In the present study we demonstrate that although cued orientations are encoded in the feedback layers of the visual cortex, the content of the false percepts are encoded in the feedforward layers and did not rely on these cued orientations. This shows that false percepts can in principle emerge from random feedforward signals in the visual cortex, with possible implications for disorders hallmarked by hallucinations like schizophrenia and Parkinson's disease.


Assuntos
Sinais (Psicologia) , Córtex Visual , Humanos , Masculino , Feminino , Motivação , Imageamento por Ressonância Magnética , Retroalimentação , Percepção Visual
3.
Front Neurosci ; 17: 1133086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694109

RESUMO

The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, ß1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted ß1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for ß1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.

4.
J Neurosci Methods ; 398: 109950, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598941

RESUMO

BACKGROUND: Consistent noise variance across data points (i.e. homoscedasticity) is required to ensure the validity of statistical analyses of MRI data conducted using linear regression methods. However, head motion leads to degradation of image quality, introducing noise heteroscedasticity into ordinary-least square analyses. NEW METHOD: The recently introduced QUIQI method restores noise homoscedasticity by means of weighted least square analyses in which the weights, specific for each dataset of an analysis, are computed from an index of motion-induced image quality degradation. QUIQI was first demonstrated in the context of brain maps of the MRI parameter R2 * , which were computed from a single set of images with variable echo time. Here, we extend this framework to quantitative maps of the MRI parameters R1, R2 * , and MTsat, computed from multiple sets of images. RESULTS: QUIQI restores homoscedasticity in analyses of quantitative MRI data computed from multiple scans. QUIQI allows for optimization of the noise model by using metrics quantifying heteroscedasticity and free energy. COMPARISON WITH EXISTING METHODS: QUIQI restores homoscedasticity more effectively than insertion of an image quality index in the analysis design and yields higher sensitivity than simply removing the datasets most corrupted by head motion from the analysis. CONCLUSION: QUIQI provides an optimal approach to group-wise analyses of a range of quantitative MRI parameter maps that is robust to inherent homoscedasticity.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física)
5.
Neuroimage ; 279: 120294, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517572

RESUMO

Geometric distortion is a major limiting factor for spatial specificity in high-resolution fMRI using EPI readouts and is exacerbated at higher field strengths due to increased B0 field inhomogeneity. Prominent correction schemes are based on B0 field-mapping or acquiring reverse phase-encoded (reversed-PE) data. However, to date, comparisons of these techniques in the context of fMRI have only been performed on 2DEPI data, either at lower field or lower resolution. In this study, we investigate distortion compensation in the context of sub-millimetre 3DEPI data at 7T. B0 field-mapping and reversed-PE distortion correction techniques were applied to both partial coverage BOLD-weighted and whole brain MT-weighted 3DEPI data with matched distortion. Qualitative assessment showed overall improvement in cortical alignment for both correction techniques in both 3DEPI fMRI and whole-brain MT-3DEPI datasets. The distortion-corrected MT-3DEPI images were quantitatively evaluated by comparing cortical alignment with an anatomical reference using dice coefficient (DC) and correlation ratio (CR) measures. These showed that B0 field-mapping and reversed-PE methods both improved correspondence between the MT-3DEPI and anatomical data, with more substantial improvements consistently obtained using the reversed-PE approach. Regional analyses demonstrated that the largest benefit of distortion correction, and in particular of the reversed-PE approach, occurred in frontal and temporal regions where susceptibility-induced distortions are known to be greatest, but had not led to complete signal dropout. In conclusion, distortion correction based on reversed-PE data has shown the greater capacity for achieving faithful alignment with anatomical data in the context of high-resolution fMRI at 7T using 3DEPI.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Artefatos
6.
Neuroimage ; 274: 120128, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116765

RESUMO

Motor skill learning relies on neural plasticity in the motor and limbic systems. However, the spatial and temporal characteristics of these changes-and their microstructural underpinnings-remain unclear. Eighteen healthy males received 1 h of training in a computer-based motion game, 4 times a week, for 4 consecutive weeks, while 14 untrained participants underwent scanning only. Performance improvements were observed in all trained participants. Serial myelin- and iron-sensitive multiparametric mapping at 3T during this period of intensive motor skill acquisition revealed temporally and spatially distributed, performance-related microstructural changes in the grey and white matter across a corticospinal-cerebellar-hippocampal circuit. Analysis of the trajectory of these transient changes suggested time-shifted cascades of plasticity from the dominant sensorimotor system to the contralateral hippocampus. In the cranial corticospinal tracts, changes in myelin-sensitive metrics during training in the posterior limb of the internal capsule were of greater magnitude in those who trained their upper limbs vs. lower limb trainees. Motor skill learning is associated with waves of grey and white matter plasticity, across a broad sensorimotor network.


Assuntos
Destreza Motora , Substância Branca , Masculino , Humanos , Aprendizagem , Substância Branca/diagnóstico por imagem , Extremidade Superior , Bainha de Mielina , Plasticidade Neuronal
7.
Sci Rep ; 13(1): 3754, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882432

RESUMO

The habenula is a small, epithalamic brain structure situated between the mediodorsal thalamus and the third ventricle. It plays an important role in the reward circuitry of the brain and is implicated in psychiatric conditions, such as depression. The importance of the habenula for human cognition and mental health make it a key structure of interest for neuroimaging studies. However, few studies have characterised the physical properties of the human habenula using magnetic resonance imaging because its challenging visualisation in vivo, primarily due to its subcortical location and small size. To date, microstructural characterization of the habenula has focused on quantitative susceptibility mapping. In this work, we complement this previous characterisation with measures of longitudinal and effective transverse relaxation rates, proton density and magnetisation transfer saturation using a high-resolution quantitative multi-parametric mapping protocol at 3T, in a cohort of 26 healthy participants. The habenula had consistent boundaries across the various parameter maps and was most clearly visualised on the longitudinal relaxation rate maps. We have provided a quantitative multi-parametric characterisation that may be useful for future sequence optimisation to enhance visualisation of the habenula, and additionally provides reference values for future studies investigating pathological differences in habenula microstructure.


Assuntos
Habenula , Humanos , Cognição , Imageamento por Ressonância Magnética , Neuroimagem
8.
Magn Reson Med ; 89(1): 128-143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36161672

RESUMO

PURPOSE: The effective transverse relaxation rate ( R 2 * $$ {\mathrm{R}}_2^{\ast } $$ ) is influenced by biological features that make it a useful means of probing brain microstructure. However, confounding factors such as dependence on flip angle (α) and fiber orientation with respect to the main field ( θ $$ \uptheta $$ ) complicate interpretation. The α- and θ $$ \uptheta $$ -dependence stem from the existence of multiple sub-voxel micro-environments (e.g., myelin and non-myelin water compartments). Ordinarily, it is challenging to quantify these sub-compartments; therefore, neuroscientific studies commonly make the simplifying assumption of a mono-exponential decay obtaining a single R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimate per voxel. In this work, we investigated how the multi-compartment nature of tissue microstructure affects single compartment R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimates. METHODS: We used 2-pool (myelin and non-myelin water) simulations to characterize the bias in single compartment R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimates. Based on our numeric observations, we introduced a linear model that partitions R 2 * $$ {\mathrm{R}}_2^{\ast } $$ into α-dependent and α-independent components and validated this in vivo at 7T. We investigated the dependence of both components on the sub-compartment properties and assessed their robustness, orientation dependence, and reproducibility empirically. RESULTS: R 2 * $$ {\mathrm{R}}_2^{\ast } $$ increased with myelin water fraction and residency time leading to a linear dependence on α. We observed excellent agreement between our numeric and empirical results. Furthermore, the α-independent component of the proposed linear model was robust to the choice of α and reduced dependence on fiber orientation, although it suffered from marginally higher noise sensitivity. CONCLUSION: We have demonstrated and validated a simple approach that mitigates flip angle and orientation biases in single-compartment R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimates.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Bainha de Mielina/química , Encéfalo/diagnóstico por imagem , Água/análise
9.
Neuroimage Clin ; 36: 103240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36510411

RESUMO

Leber Hereditary Optic Neuropathy (LHON) is an inherited mitochondrial retinal disease that causes the degeneration of retinal ganglion cells and leads to drastic loss of visual function. In the last decades, there has been a growing interest in using Magnetic Resonance Imaging (MRI) to better understand mechanisms of LHON beyond the retina. This is partially due to the emergence of gene-therapies for retinal diseases, and the accompanying expanded need for reliably quantifying and monitoring visual processing and treatment efficiency in patient populations. This paper aims to draw a current picture of key findings in this field so far, the challenges of using neuroimaging methods in patients with LHON, and important open questions that MRI can help address about LHON disease mechanisms and prognoses, including how downstream visual brain regions are affected by the disease and treatment and why, and how scope for neural plasticity in these pathways may limit or facilitate recovery.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/diagnóstico por imagem , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Células Ganglionares da Retina/metabolismo , Retina/diagnóstico por imagem , Retina/patologia , Imageamento por Ressonância Magnética
10.
Elife ; 112022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36166372

RESUMO

Conduction velocity is the speed at which electrical signals travel along axons and is a crucial determinant of neural communication. Inferences about conduction velocity can now be made in vivo in humans using a measure called the magnetic resonance (MR) g-ratio. This is the ratio of the inner axon diameter relative to that of the axon plus the myelin sheath that encases it. Here, in the first application to cognition, we found that variations in MR g-ratio, and by inference conduction velocity, of the parahippocampal cingulum bundle were associated with autobiographical memory recall ability in 217 healthy adults. This tract connects the hippocampus with a range of other brain areas. We further observed that the association seemed to be with inner axon diameter rather than myelin content. The extent to which neurites were coherently organised within the parahippocampal cingulum bundle was also linked with autobiographical memory recall ability. Moreover, these findings were specific to autobiographical memory recall and were not apparent for laboratory-based memory tests. Our results offer a new perspective on individual differences in autobiographical memory recall ability, highlighting the possible influence of specific white matter microstructure features on conduction velocity when recalling detailed memories of real-life past experiences.


Assuntos
Memória Episódica , Substância Branca , Adulto , Encéfalo , Humanos , Imageamento por Ressonância Magnética , Rememoração Mental , Substância Branca/diagnóstico por imagem
11.
Neuroimage ; 262: 119529, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35926761

RESUMO

Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer saturation MTsat) that are sensitive to microstructural tissue properties such as iron and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method to estimate the local error of PD, R1, and MTsat maps that captures both noise and artefacts on a routine basis without requiring additional data. To investigate the method's sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field strength (3T vs. 7T) and MPM parameters: it halved from PD to R1 and decreased from PD to MTsat by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM parameters showed reduced variability at the group level as compared to their single-repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined MPM maps is available in the open-source hMRI toolbox.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Neuroimagem/métodos
12.
Magn Reson Imaging ; 92: 180-186, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35820546

RESUMO

PURPOSE: Universal Pulses (UPs) are excitation pulses that reduce the flip angle inhomogeneity in high field MRI systems without subject-specific optimization, originally developed for parallel transmit (PTX) systems at 7 T. We investigated the potential benefits of UPs for single channel (SC) transmit systems at 3 T, which are widely used for clinical and research imaging, and for which flip angle inhomogeneity can still be problematic. METHODS: SC-UPs were designed using a spiral nonselective k-space trajectory for brain imaging at 3 T using transmit field maps (B1+) and off-resonance maps (B0) acquired on two different scanner types: a 'standard' single channel transmit system and a system with a PTX body coil. The effect of training group size was investigated using data (200 subjects) from the standard system. The PTX system was used to compare SC-UPs to PTX-UPs (15 subjects). In two additional subjects, prospective imaging using SC-UP was studied. RESULTS: Average flip angle homogeneity error fell from 9.5 ± 0.5 % for 'default' excitation to 3.0 ± 0.6 % using SC-UPs trained over 50 subjects. Performance of the UPs was found to steadily improve as training group size increased, but stabilized after ~15 subjects. On the PTX-enabled system, SC-UPs again outperformed default excitation in simulations (4.8 ± 0.6 % error versus 10.6 ± 0.8 % respectively) though greater homogenization could be achieved with PTX-UPs (3.9 ± 0.6 %) and personalized pulses (SC-PP 3.6 ± 1.0 %, PTX-PP 2.9 ± 0.6 %). MP-RAGE imaging using SC-UP resulted in greater separation between grey and white matter signal intensities than default excitation. CONCLUSIONS: SC-UPs can improve excitation homogeneity in standard 3 T systems without further calibration and could be used instead of a default excitation pulse for nonselective neuroimaging at 3 T.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Calibragem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Estudos Prospectivos
13.
Magn Reson Med ; 88(2): 787-801, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35405027

RESUMO

PURPOSE: High-resolution quantitative multi-parameter mapping shows promise for non-invasively characterizing human brain microstructure but is limited by physiological artifacts. We implemented corrections for rigid head movement and respiration-related B0-fluctuations and evaluated them in healthy volunteers and dementia patients. METHODS: Camera-based optical prospective motion correction (PMC) and FID navigator correction were implemented in a gradient and RF-spoiled multi-echo 3D gradient echo sequence for mapping proton density (PD), longitudinal relaxation rate (R1) and effective transverse relaxation rate (R2*). We studied their effectiveness separately and in concert in young volunteers and then evaluated the navigator correction (NAVcor) with PMC in a group of elderly volunteers and dementia patients. We used spatial homogeneity within white matter (WM) and gray matter (GM) and scan-rescan measures as quality metrics. RESULTS: NAVcor and PMC reduced artifacts and improved the homogeneity and reproducibility of parameter maps. In elderly participants, NAVcor improved scan-rescan reproducibility of parameter maps (coefficient of variation decreased by 14.7% and 11.9% within WM and GM respectively). Spurious inhomogeneities within WM were reduced more in the elderly than in the young cohort (by 9% vs. 2%). PMC increased regional GM/WM contrast and was especially important in the elderly cohort, which moved twice as much as the young cohort. We did not find a significant interaction between the two corrections. CONCLUSION: Navigator correction and PMC significantly improved the quality of PD, R1, and R2* maps, particularly in less compliant elderly volunteers and dementia patients.


Assuntos
Demência , Imageamento por Ressonância Magnética , Idoso , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Movimento (Física) , Estudos Prospectivos , Reprodutibilidade dos Testes
14.
Magn Reson Med ; 88(1): 280-291, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35313378

RESUMO

PURPOSE: Inter-scan motion is a substantial source of error in R1 estimation methods based on multiple volumes, for example, variable flip angle (VFA), and can be expected to increase at 7T where B1 fields are more inhomogeneous. The established correction scheme does not translate to 7T since it requires a body coil reference. Here we introduce two alternatives that outperform the established method. Since they compute relative sensitivities they do not require body coil images. THEORY: The proposed methods use coil-combined magnitude images to obtain the relative coil sensitivities. The first method efficiently computes the relative sensitivities via a simple ratio; the second by fitting a more sophisticated generative model. METHODS: R1 maps were computed using the VFA approach. Multiple datasets were acquired at 3T and 7T, with and without motion between the acquisition of the VFA volumes. R1 maps were constructed without correction, with the proposed corrections, and (at 3T) with the previously established correction scheme. The effect of the greater inhomogeneity in the transmit field at 7T was also explored by acquiring B1+ maps at each position. RESULTS: At 3T, the proposed methods outperform the baseline method. Inter-scan motion artifacts were also reduced at 7T. However, at 7T reproducibility only converged on that of the no motion condition if position-specific transmit field effects were also incorporated. CONCLUSION: The proposed methods simplify inter-scan motion correction of R1 maps and are applicable at both 3T and 7T, where a body coil is typically not available. The open-source code for all methods is made publicly available.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Cintilografia , Reprodutibilidade dos Testes
15.
Hum Brain Mapp ; 43(6): 1973-1983, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35112434

RESUMO

Motion during the acquisition of magnetic resonance imaging (MRI) data degrades image quality, hindering our capacity to characterise disease in patient populations. Quality control procedures allow the exclusion of the most affected images from analysis. However, the criterion for exclusion is difficult to determine objectively and exclusion can lead to a suboptimal compromise between image quality and sample size. We provide an alternative, data-driven solution that assigns weights to each image, computed from an index of image quality using restricted maximum likelihood. We illustrate this method through the analysis of quantitative MRI data. The proposed method restores the validity of statistical tests, and performs near optimally in all brain regions, despite local effects of head motion. This method is amenable to the analysis of a broad type of MRI data and can accommodate any measure of image quality.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Movimento (Física) , Controle de Qualidade , Tamanho da Amostra
16.
Cortex ; 145: 187-200, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742100

RESUMO

Several studies have established specific relationships between White Matter (WM) and behaviour. However, these studies have typically focussed on fractional anisotropy (FA), a neuroimaging metric that is sensitive to multiple tissue properties, making it difficult to identify what biological aspects of WM may drive such relationships. Here, we carry out a pre-registered assessment of WM-behaviour relationships in 50 healthy individuals across multiple behavioural and anatomical domains, and complementing FA with myelin-sensitive quantitative MR modalities (MT, R1, R2∗). Surprisingly, we only find support for predicted relationships between FA and behaviour in one of three pre-registered tests. For one behavioural domain, where we failed to detect an FA-behaviour correlation, we instead find evidence for a correlation between behaviour and R1. This hints that multimodal approaches are able to identify a wider range of WM-behaviour relationships than focusing on FA alone. To test whether a common biological substrate such as myelin underlies WM-behaviour relationships, we then ran joint multimodal analyses, combining across all MRI parameters considered. No significant multimodal signatures were found and power analyses suggested that sample sizes of 40-200 may be required to detect such joint multimodal effects, depending on the task being considered. These results demonstrate that FA-behaviour relationships from the literature can be replicated, but may not be easily generalisable across domains. Instead, multimodal microstructural imaging may be best placed to detect a wider range of WM-behaviour relationships, as different MRI modalities provide distinct biological sensitivities. Our findings highlight a broad heterogeneity in WM's relationship with behaviour, suggesting that variable biological effects may be shaping their interaction.


Assuntos
Substância Branca , Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
17.
Front Neurosci ; 15: 706473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421526

RESUMO

Diffusion magnetic resonance imaging (MRI) is an increasingly popular technique in basic and clinical neuroscience. One promising application is to combine diffusion MRI with myelin maps from complementary MRI techniques such as multi-parameter mapping (MPM) to produce g-ratio maps that represent the relative myelination of axons and predict their conduction velocity. Statistical Parametric Mapping (SPM) can process both diffusion data and MPMs, making SPM the only widely accessible software that contains all the processing steps required to perform group analyses of g-ratio data in a common space. However, limitations have been identified in its method for reducing susceptibility-related distortion in diffusion data. More generally, susceptibility-related image distortion is often corrected by combining reverse phase-encoded images (blip-up and blip-down) using the arithmetic mean (AM), however, this can lead to blurred images. In this study we sought to (1) improve the susceptibility-related distortion correction for diffusion MRI data in SPM; (2) deploy an alternative approach to the AM to reduce image blurring in diffusion MRI data when combining blip-up and blip-down EPI data after susceptibility-related distortion correction; and (3) assess the benefits of these changes for g-ratio mapping. We found that the new processing pipeline, called consecutive Hyperelastic Susceptibility Artefact Correction (HySCO) improved distortion correction when compared to the standard approach in the ACID toolbox for SPM. Moreover, using a weighted average (WA) method to combine the distortion corrected data from each phase-encoding polarity achieved greater overlap of diffusion and more anatomically faithful structural white matter probability maps derived from minimally distorted multi-parameter maps as compared to the AM. Third, we showed that the consecutive HySCO WA performed better than the AM method when combined with multi-parameter maps to perform g-ratio mapping. These improvements mean that researchers can conveniently access a wide range of diffusion-related analysis methods within one framework because they are now available within the open-source ACID toolbox as part of SPM, which can be easily combined with other SPM toolboxes, such as the hMRI toolbox, to facilitate computation of myelin biomarkers that are necessary for g-ratio mapping.

18.
Med Image Anal ; 73: 102149, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271531

RESUMO

Quantitative MR imaging is increasingly favoured for its richer information content and standardised measures. However, computing quantitative parameter maps, such as those encoding longitudinal relaxation rate (R1), apparent transverse relaxation rate (R2*) or magnetisation-transfer saturation (MTsat), involves inverting a highly non-linear function. Many methods for deriving parameter maps assume perfect measurements and do not consider how noise is propagated through the estimation procedure, resulting in needlessly noisy maps. Instead, we propose a probabilistic generative (forward) model of the entire dataset, which is formulated and inverted to jointly recover (log) parameter maps with a well-defined probabilistic interpretation (e.g., maximum likelihood or maximum a posteriori). The second order optimisation we propose for model fitting achieves rapid and stable convergence thanks to a novel approximate Hessian. We demonstrate the utility of our flexible framework in the context of recovering more accurate maps from data acquired using the popular multi-parameter mapping protocol. We also show how to incorporate a joint total variation prior to further decrease the noise in the maps, noting that the probabilistic formulation allows the uncertainty on the recovered parameter maps to be estimated. Our implementation uses a PyTorch backend and benefits from GPU acceleration. It is available at https://github.com/balbasty/nitorch.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Humanos
19.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299126

RESUMO

Friedreich's ataxia (FRDA) is a comparatively rare autosomal recessive neurological disorder primarily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1 of the FXN gene. The repeat expansion causes gene silencing that results in deficiency of the frataxin protein leading to mitochondrial dysfunction, oxidative stress and cell death. The GAA repeat tract in some cases may be impure with sequence variations called interruptions. It has previously been observed that large interruptions of the GAA repeat tract, determined by abnormal MboII digestion, are very rare. Here we have used triplet repeat primed PCR (TP PCR) assays to identify small interruptions at the 5' and 3' ends of the GAA repeat tract through alterations in the electropherogram trace signal. We found that contrary to large interruptions, small interruptions are more common, with 3' interruptions being most frequent. Based on detection of interruptions by TP PCR assay, the patient cohort (n = 101) was stratified into four groups: 5' interruption, 3' interruption, both 5' and 3' interruptions or lacking interruption. Those patients with 3' interruptions were associated with shorter GAA1 repeat tracts and later ages at disease onset. The age at disease onset was modelled by a group-specific exponential decay model. Based on this modelling, a 3' interruption is predicted to delay disease onset by approximately 9 years relative to those lacking 5' and 3' interruptions. This highlights the key role of interruptions at the 3' end of the GAA repeat tract in modulating the disease phenotype and its impact on prognosis for the patient.


Assuntos
Ataxia de Friedreich/epidemiologia , Ataxia de Friedreich/genética , Fenótipo , Expansão das Repetições de Trinucleotídeos , Adolescente , Adulto , Fatores Etários , Idade de Início , Criança , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Adulto Jovem
20.
Brain Neurosci Adv ; 5: 23982128211011923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997294

RESUMO

Individual differences in scene imagination, autobiographical memory recall, future thinking and spatial navigation have long been linked with hippocampal structure in healthy people, although evidence for such relationships is, in fact, mixed. Extant studies have predominantly concentrated on hippocampal volume. However, it is now possible to use quantitative neuroimaging techniques to model different properties of tissue microstructure in vivo such as myelination and iron. Previous work has linked such measures with cognitive task performance, particularly in older adults. Here we investigated whether performance on scene imagination, autobiographical memory, future thinking and spatial navigation tasks was associated with hippocampal grey matter myelination or iron content in young, healthy adult participants. Magnetic resonance imaging data were collected using a multi-parameter mapping protocol (0.8 mm isotropic voxels) from a large sample of 217 people with widely-varying cognitive task scores. We found little evidence that hippocampal grey matter myelination or iron content were related to task performance. This was the case using different analysis methods (voxel-based quantification, partial correlations), when whole brain, hippocampal regions of interest, and posterior:anterior hippocampal ratios were examined, and across different participant sub-groups (divided by gender and task performance). Variations in hippocampal grey matter myelin and iron levels may not, therefore, help to explain individual differences in performance on hippocampal-dependent tasks, at least in young, healthy individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...